


# COs, POs ASSESSMENT & ATTAINMENT PROCESS MANUAL





# Index

| S.N. | Chapter                                                                                                                                                                                            | Page No |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1    | Vision and Mission of the Institution                                                                                                                                                              | 1       |
| 2    | Vision and Mission of the all Departments with Process                                                                                                                                             | 2-7     |
| 3    | CO-PO-PSO Definitions and Promotions                                                                                                                                                               | 9-13    |
| 4    | CO-PO-PSO Mapping Procedure                                                                                                                                                                        | 14-17   |
| 5    | Assessment Process Administrative Setup for Monitoring the Attainment of POs                                                                                                                       | 18-28   |
| 6    | Program Wise Program Specific Outcomes (PSOs)                                                                                                                                                      | 29-33   |
| 7    | Course Wise Course Outcomes (COS)  Applied Sciences Computer Engineering Artificial Intelligence & Data Science Civil Engineering Electronics and Communication Engineering Electrical Engineering | 34-112  |
| 8    | Program Wise CO-PO Mapping                                                                                                                                                                         | 113-196 |
| 9    | Program Wise CO-PSO Mapping  Computer Engineering  Artificial Intelligence & Data Science  Civil Engineering  Electronics and Communication Engineering  Electrical Engineering                    | 197-267 |



#### **CHAPTER I**

#### Vision and Mission of the Institution

#### VISION:

To create knowledge-based society with scientific temper through cutting-edge technologies, innovative research and to become valuable resource for enriching mankind.

- To provide an environment that will allow students and faculty members to be skilled in creation and implementation
  of new ideas.
- To provide platform to improve questioning, observing, testing, analyzing and communication skills.
- To provide qualitative education and generate new knowledge with integration of emerging technologies and research.
- To practice and promote high standard of potential ethics, transparency and accountability.



# **CHAPTER II.A**

# **Vision and Mission of the Applied Sciences Department**

#### **VISION:**

To facilitate skills-based learning of Sciences and Engineering through cutting-edge technologies, innovative research to cater needs of the society through integrating human values.

- To provide an environment that facilitates skilled manpower in creation and implementation of new ideas in sciences.
- To provide a platform to improve questioning, observing, testing, analyzing and communication skills.
- To provide qualitative education and generate new knowledge in the sciences and technology domain.
- To provide all measures to maintain professional ethics in life long working.



#### **CHAPTER II.B**

# **Vision and Mission of the Computer Engineering Department**

#### VISION:

To create an environment in which new ideas, research and technology develop and the technocrats and innovators of tomorrow become competent to face the global challenges.

- To develop competent professional with innovative mindset, problem solving, design and implementation skills through excellent under graduate education.
- To provide platform to students so that they can expertise themselves as a computer professional, entrepreneurs or as a manager while fulfilling their ethical and social responsibility in a globally competitive environment.
- To contribute significantly to the research and discovery of new arenas of methods and knowledge in the field of computer engineering.



# **CHAPTER II.C**

# Vision and Mission of the Artificial Intelligence & Data Science Department

#### **VISION:**

To develop technocrats in the domain of emerging technologies by making them ethical professionals with innovative knowledge and scientific temper to enrich the society ready to face global challenges.

- To develop the students as technocrats proficient with technologies in the field of Artificial Intelligence & Data Science.
- To provide quality education as per need of industry and professions, while ensuring students' contribution to society through research development aptitude.
- To nurture the students with professional ethics & concern towards mankind in a global perspective.



# **CHAPTER II.D**

# **Vision and Mission of the Civil Engineering Department**

#### **VISION:**

To serve the Nation by providing high quality engineering education that enables students to get a profession that can improve the civil infrastructure and social welfare.

- To create enabling environment for excellent teaching, learning and research in the diverse field for sustainable development.
- To draw the best expertise in science and technology so as to provide students with the skills to visualize, synthesize and execute projects in these fields.
- To absorb a vitality of entrepreneurship and innovation in its students.



#### **CHAPTER II.E**

# Vision and Mission of Electronics and Communication Engineering Department

#### VISION:

To be a global leader in Electronics and Communication Engineering, pioneering advancements and innovation in the field.

- Excellence in Education: Provide an outstanding learning experience, equipping students with comprehensive knowledge and practical skills in Electronics and Communication Engineering.
- Cutting-edge Research: Conduct innovative research to push the boundaries of knowledge, addressing current and future challenges in communication technology and electronics.
- Collaborative Environment: Foster a culture of interdisciplinary collaboration within and outside the department, facilitating exchange of ideas and fostering creativity.
- Leadership Development: Prepare graduates to be industry-ready leaders, instilling in them values of integrity, professionalism, and a commitment to ethical practices in addressing global engineering challenges.



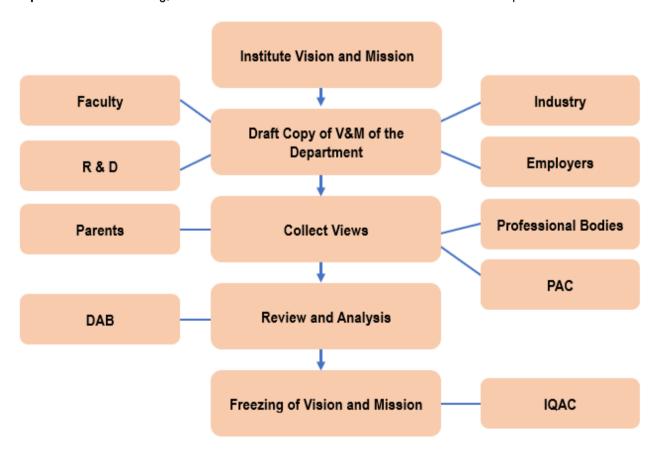
#### **CHAPTER II.F**

# **Vision and Mission of Electrical Engineering Department**

#### VISION:

To be a leader in the teaching and training of electrical engineering by producing graduates into highly skilled technocrats, who can thrive in their chosen field and engage in creative research and entrepreneurship while making a strong commitment for the betterment of the society.

- To offer cutting-edge tools that supports the attainment of excellence in research and development as well as teaching and learning.
- To give students unique learning experiences and a supportive atmosphere so they can improve their technical, extracurricular, co-curricular, entrepreneurial, soft skill and personality attributes.
- To improve training programs, research facilities and consulting services in order to fill the gap between business and academics.
- To provide students with need-based skill development programs in the ongoing education for the long-term advancement and progress of the society.


#### **CHAPTER II.G**

### The Process for Defining Vision and Mission of the Department

The following steps are followed to establish Vision and Mission of Department: -

- **Step 1:** The Vision & Mission of the Institute is taken as the basis.
- **Step 2:** The Department conducts brain-storming sessions with the faculty on the skill-set required by the local and global employers, Industry Advances in Technology and R & D, and the draft copy of the Vision and Mission of the Department is drafted.
- **Step 3:** The views from Parents, Professional Bodies, Program Assessment Committee (PAC) on the draft are also collected and incorporated to revise the draft version based on their inputs.
- **Step 4:** The received views from Parents, Professional Bodies, Program Assessment Committee (PAC) are analyzed and reviewed by Department Advisory Board (DAB) to check the consistency with the vision and mission of the institute.

**Step 5:** After are reviewing, IQAC finalized and freeze the Vision and mission of the department.



#### **CHAPTER III**

#### **CO-PO-PSO Definitions and Procedure**

#### Course outcomes (COs):

Course outcomes (COs) are direct statements that describe the essential and enduring disciplinary knowledge, abilities that students should possess and the depth of learning that is expected upon completion of a course. They are clearly specified and communicated. The Course Outcomes are prepared by the course coordinator in consultation with concerned faculty members teaching the same course.

#### Program Outcomes (POs):

Program outcomes describe what students are expected to know and would be able to do by the time of graduation. These relate to the skills, knowledge, and behaviors that students acquire as they progress through the program.

#### **Program Specific Outcomes (PSOs):**

Program Specific Outcomes are statements that describe what the graduates of a specific engineering program should be able to do.

#### Dissemination of Vision, Mission, Quality policy, COs, POs & PSOs

| S.No | Stakeholders | Activities/Meetings             | Mode of communication                                                                          | Period of<br>Interaction |
|------|--------------|---------------------------------|------------------------------------------------------------------------------------------------|--------------------------|
|      |              | Semester Re-<br>opening Day     | College website, notice boards, Department Notice boards, Library,                             | Semester wise            |
| 1    | Students     | Department Events               | Department Magazines, Student induction                                                        | Periodically             |
| '    | Otadents     | Students Counselling<br>Meeting | program, Student awareness workshops,<br>Question Papers, Student profile &<br>Progress Report | Quarterly                |
|      |              | Induction Day                   | College website, Weekly schedules,                                                             |                          |
| 2    | Students     | Fresher's Day                   | Meeting Hall, Notice boards, Student induction program                                         | Yearly once              |
| 3    | Parents      | Induction day                   | Tutors and HOD                                                                                 | Yearly Once              |
| 4    | Industry     | R&D Meeting                     | College website, Presentation by Institute                                                     | As Required              |
| 4    | Experts      | MoU Meeting                     | Head                                                                                           | As Required              |
|      |              | Seminar                         |                                                                                                | Frequently               |
| 5    | Academic     | Workshop                        | College website, feedback forms,                                                               | Semester wise            |
| )    | Experts      | Conference                      | Conference coordinators, Department event Organizers                                           | Yearly once              |
|      |              | Guest Lectures                  | Overt Organizora                                                                               | Periodically             |
| 6    | Faculty      | Management meeting With Experts | College website, Notice boards, Faculty meetings                                               | Semester wise            |
| J    | Members      | Department meetings             | Notice boards, Official E-mail ID                                                              | Semester wise            |



# **Program Outcomes**

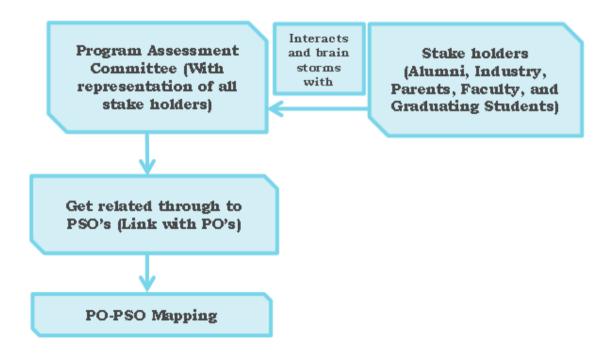
Engineering Graduates will be able to:

- **Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- Design/Development of Solutions: Design solutions for complex engineering problems and design system
  components or processes that meet the specified needs with appropriate consideration for the public health
  and safety, and the cultural, societal, and environmental considerations.
- Conduct Investigations of Complex Problems: Use research-based knowledge and research methods
  including design of experiments, analysis and interpretation of data, and synthesis of the information to
  provide valid conclusions.
- Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering
  and IT tools including prediction and modeling to complex engineering activities with an understanding of the
  limitations.
- The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **Individual and Team Work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **Life-Long Learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.



| S.No | Graduate Attributes                                                                                                                                                                                                                                                                                                   | Program Outcomes                                                                                                                                                                                     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | <b>Engineering Knowledge:</b> Graduate should be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                    | a) Graduate will demonstrate knowledge in fundamentals of mathematics, science and engineering.                                                                                                      |
| 2    | <b>Problem Analysis:</b> Graduate should be able to Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                          | b) Graduate will demonstrate an ability to identify, formulate and solve problems in key areas of Electrical and Electronics Engineering - design and application of equipment, devices and systems. |
| 3    | Design / Development of Solutions: Graduate should be able to Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations | c) Graduate will demonstrate an ability to design and conduct experiment, analyze and interpret data in Electrical and Electronics Engineering.                                                      |
| 4    | Conduct investigations of complex problems: Graduate should be able to Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid Conclusions                                                         | d) Graduate will demonstrate ability in conducting investigate ones to solve problems using research-based knowledge and methods to provide logical conclusions                                      |
| 5    | Modern tool usage: Graduate should be able to Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations                                                           | e) Graduate will demonstrate skills to use<br>modern engineering and IT tools,<br>software's and equipment to analyze the<br>problems in Electrical and Electronics<br>Engineering                   |
| 6    | The engineer and society: Graduate should be able to apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                        | f) Graduate will show the understanding of impact of engineering solutions on the society to assess health, safety, legal, and social issues in engineering                                          |
| 7    | Environment & sustainability: Graduate should be able to Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                              | g) Graduate will demonstrate the impact of professional engineering solutions in environmental context and to be able to respond effectively to the needs of sustainable development                 |
| 8    | <b>Ethics:</b> Graduate should be able to apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice                                                                                                                                                       | h) Graduate will demonstrate knowledge of Professional and ethical responsibilities                                                                                                                  |




| 9  | Individual and team work: Graduate should be able to Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings                                                                                                                                                  | i) Graduate will demonstrate an ability to work effectively as an individual and as a team member/ leader in multi- Disciplinary areas. |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 10 | Communication: Graduate should be able to communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instruction | j) Graduate will be able to critique writing samples (abstract, executive summary, project report) and oral presentations.              |
| 11 | Project management and finance: Graduate should be able to demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage project and in multidisciplinary environments                                               | k) Graduate will demonstrate knowledge of management principles and apply these to manage projects in multidisciplinary environments.   |
| 12 | <b>Life-long learning:</b> Graduate should be able to recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change                                                                                                          | I) Graduate will recognize the need of self-<br>education and ability to engage in life - long<br>learning.                             |



# **PROGRAM SPECIFIC OUTCOMES**

#### **Process for Defining PSOs**

The program Assessment committee along with the stake holders define the program specific outcomes after having a brain storming session with the stake holders.





#### **CHAPTER IV**

#### **CO-PO-PSO Mapping Procedure**

All the courses together must cover all the POs (and PSOs). For a course we map the COs to POs through the CO-PO matrix and to PSOs through the CO-PSO matrix as shown below. The various correlation levels are:

- "1" Slight (Low) Correlation
- "2" Moderate (Medium) Correlation
- "3" Substantial (High) Correlation
- "-" indicates there is no correlation.

There are four levels of outcome such as Course Outcome (CO), Program Outcome (PO), Program Specific Outcome (PSO). Course Outcomes are the statements that declare what students should be able to do at the end of a course. POs are defined by Accreditation Agencies of the country (NBA in India), which are the statements about the knowledge, skills and attitudes, graduate attributes of a formal engineering program should have. Graduates Attributes (GAs) are the components indicative of the graduate's potential to acquire competence to practice at the appropriate level. GAs form a set of individually assessable outcomes of the programme. The Program outcomes reflect the ability of graduates to demonstrate knowledge in fundamentals of Basic Sciences, Humanities and Social Sciences, Engineering Sciences and apply these principles in understanding and practically apply the knowledge in professional core subjects, electives and projects which enables the graduates to be competent at the time of graduation. The graduates must adhere to professional and ethical responsibilities in the pursuit of their careers and also for the benefit of the society. These outcomes also enable the graduate to pursue higher studies and engage in R&D for a successful professional career. The proper definition and the attainment of POs contribute to the attainment of Program Specific Outcome which will help the graduate to perform his/ her duties, professional responsibilities, design, development, production and testing of novel products, ability to deal with finances and project management during his/her early professional career of 3 to 4 years.

#### Process involved in CO-PO Mapping

The role of CO-PO mapping will be assigned to the faculty as per hierarchy. After the course (subject) allotment from the department, the course in-charge of the course has to write appropriate COs for their corresponding course. It should be narrower and measurable statements. By using the action verbs of learning levels, CO's will be designed. CO statements should describe what the students are expected to know and able to do at the end of each course, which are related to the skills, knowledge and behavior that students will acquire through the course.

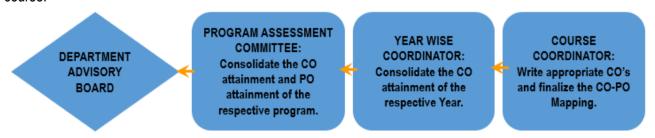



Figure: Hierarchy of faculty involvement



After writing the CO statements, CO will be mapped with PO of the department. If the department is having more than one section in a year or the same course is available for more than one program of the same institute in a semester, the subject expert will be nominated as course coordinator of the corresponding course. The role of the course coordinator is to review the CO statements and the CO-PO mapping which has been done by course in-charge. The year wise coordinator has to consolidate the CO's of the respective year and maintain the documentation of the CO attainment level of the respective year courses as well as documentation of the individual student's extra-curricular and co-curricular activities. These details will hand over to the program coordinator in order to evaluate PO attainment of the individual student as well as individual course at the end of the eighth semester. The Program Assessment Committee (PAC) has to evaluate the attainment of individual student through direct and indirect method after the student completing their program. All these works have to be done under the guidance of Department Advisory Board (DAB).

#### Identification of curricular gap

At the time of CO-PO mapping, the course in-charge has to identify the curricular gap in the course, based on the recent technological trends as well as feedback received from the stakeholders. After that, the course in-charge has to discuss with DAB about the steps to be taken to bridge the curricular gap. Content beyond the syllabus may be delivered to the students through teaching, arranging guest lectures, industrial visit, in plant training, online guiz, etc.

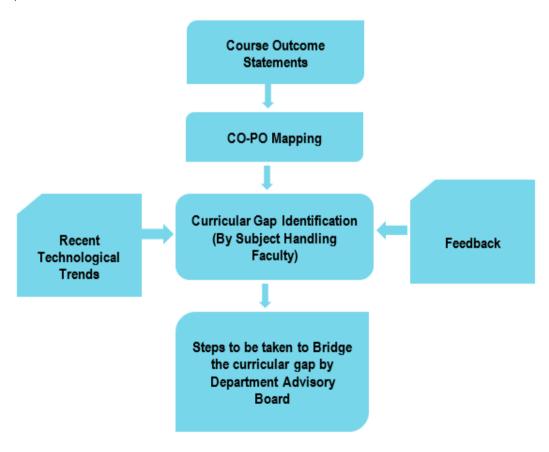



Figure: Identification of curricular gap



#### Course Outcomes to PO and PSO Mapping

Mapping strength of a course to PO/ PSO can be obtained by taking the average of the CO-PO/ PSO mapping matrices of that course. Program level CO-PO matrix for all the courses including first year courses will be done by the program coordinator.

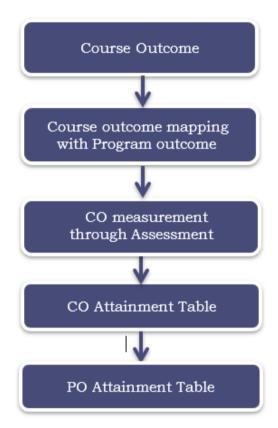



Figure: The process of CO-PO mapping validation

The process of CO-PO mapping validation is given is explained as below:

- **Step 1:** Obtain course outcome.
- **Step 2:** Mapping of Course Outcome with Program Outcome.
- **Step 3:** CO measurement through assessment.
- **Step 4:** Obtain CO attainment table through direct assessment methods.
- **Step 5**: Obtain PO attainment table through direct and indirect assessment methods.

Course Outcomes (COs) relate the skills, knowledge, and behavior that students acquire in their matriculation through the course. These are specific to a course and hence differ from one to the other.

Each CO contributes to attainment of one or more PO(s); and that way to the overall attainment of the PO and associated PSO(s).

The modes of delivery enabling the attainments are:



#### For Theory Courses:

- Chalk-and-board
- PowerPoint presentations
- Animations

Individual / batch conduct of experiments in laboratories.

#### **Process for CO – PO Mapping for Each Subject**

The faculty teaching the subject is responsible for arriving / verifying the CO – PO mapping associated for that subject. This is based on understanding of the four/five COs of that subject and how they influence / impact any of the twelve POs. characterized in terms of a "High" / "Medium" / "Low" designation with scores of 3, 2 and 1 respectively. The above mapping is shared/ discussed/ finalized with the respective department Head and the DAB (Department Advisory Board).

The curriculum comprises of courses related to basic sciences, humanities and social discipline, engineering & technology, professional / open electives, projects and seminars. Each course contributes to learning outcomes reflecting the skills and competence that are required at the time of graduation.

The Program Outcomes (POs) reflect the ability of graduates to demonstrate knowledge in fundamentals of basic sciences, humanities and social discipline, engineering & technology and practically apply the knowledge for the benefit of society. The graduates must adhere to professional and ethical responsibilities in pursuit of their careers. These outcomes also enable the graduate to pursue higher studies and engage in R&D for a successful professional career.

The POs crystallize in the attainment of Program Specific Outcome (PSOs) which will help the graduate to perform his or her duties, professional responsibilities, design, development, production and testing of novel products, ability to deal with finances and project management. These capabilities are reflected in PSOs.

#### The POs are published and disseminated in the following ways:

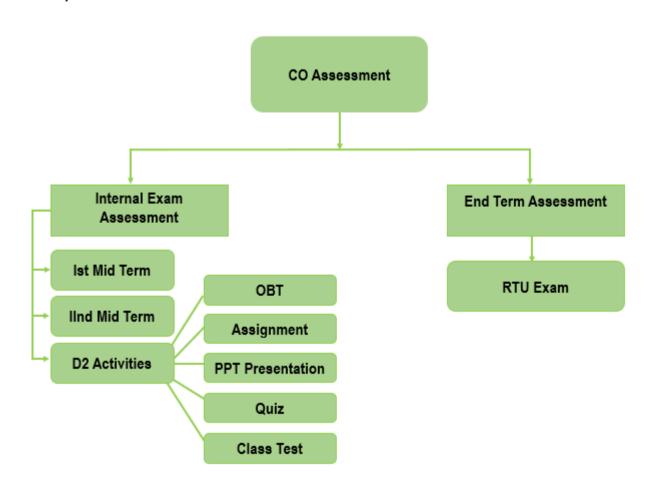
- Displayed in the Department and in classroom.
- Explained to students and their parents as part of the induction Program.
- Explained to newly joined faculty and staff members during a staff orientation Program.



#### **CHAPTER V**

#### **Assessment Process**

#### Program Assessment at the department level is broadly done under two heads:


- Direct Assessment (DA), and
- Indirect Assessment (IA)

#### The tools used for Direct Assessment are as follows:

- Student performance in Mid-semester and End-semester Examinations.
- Student performance in Tutorials / Assignments.
- Student performance in Project Work, Viva-voce, Seminars.

#### The tools used for Indirect Assessment are as follows:

- Alumni: Survey Questionnaire
- Course Exit Survey
- Exit Feedback: Survey Questionnaire
- Parent: Survey Questionnaire
- Employer's Feedback Form
- Feedback Form on Facilities
- Analysis Of Students Feedback





Within DA, the Internal Assessment of the college is given 30 marks while the remaining 70 marks is for the external assessment. The overall attainment percentage values at the program level are arrived at as weighted average of 80% DA and 20% IA.

The student performance, as measured through the marks scored, is the foundation for direct assessment.

#### The steps in this direct assessment process are as follows:

- The marks obtained by the students in a class are entered in an MS Excel file. Every question is mapped to a CO
  which in turn is contributes to one or more POs.
- In the case of Internal Examinations, the first Internal determines the attainment of the first two CO while the second internal exam determines the attainment of the third and fourth.
- The final CO PO attainment table is populated manually by the faculty taking the respective course, based on the four/five CO attainments obtained at the end of above step i.e., after the two Internal Assessments.
- This process is followed for all courses in any given semester.
- At the end of the four-year program / eight semesters, the subject- wise PO attainments are collated so as to arrive at the average attainment for each PO.

The students have an opportunity to assess, express and communicate the impact of different course delivery formats / mechanisms used by the faculty during the semester, through the Course-end Survey. These are manually assessed by the respective faculty member and the Academic Coordinator / Program Assessment Committee as might be necessary.

Administrative setup for monitoring the attainment of POs and PSOs.

#### The following administrative setup is put in place to ensure the attainment of POs and PSOs:

- Program Coordinator
- Academic Coordinator
- Program Assessment Committee
- Department Advisory Board

#### Role and Responsibilities of the Program Coordinator:

- Interacts and maintains liaise on with key stakeholders, students, faculty, department head (HOD) and employer.
- Monitors and reviews the activities of each year in the program independently with course coordinators.
- Schedules program work plan in accordance with specifications of program objectives and outcomes.
- Conducts and interprets various surveys required to assess POs and PSOs.

#### Role and Responsibilities of the Academic Coordinator:

- Coordinates and supervise the faculty teaching the particular course in the module.
- Responsible for assessment of the course objectives and outcomes.
- Recommend and facilitate workshops, faculty development programs, meetings or conferences to meet the course outcomes.
- Analyzes results of particular course and recommends the Program coordinator and/or Head of the Department to take appropriate action.
- Liaise with students, faculty, program coordinator and Head of the Department to determine priorities and policies.

#### Role and Responsibilities of the Program Assessment Committee:

• Program Assessment Committee consists of Program Coordinator and faculty representatives.



- Chaired by Program Coordinator, the committee monitors the attainment of POs and PSOs.
- Evaluates program effectiveness and proposes necessary changes.
- Motivates the faculty and students towards attending workshops, developing projects, working models, paper publications and research, assessing course content / delivery.
- Interacts with students, faculty and outside /community agencies (through their representation) in facilitating PSOs. PAC meets at least once in 6 months to review the program and submits report to the Department Advisory Board.

#### Role and Responsibilities of the Department Advisory Board (DAB):

- DAB consists of head of the department, program coordinators, and the representatives of key stakeholders.
- DAB chaired by head of the department, receives the report of the Program Assessment Committee and monitors
  the progress of the program, on current and future issues related to programs.
- Reviews, assesses, and monitors the attainment of the departmental PSOs.
- Develops and recommends new or revised program goals and objectives. DAB meets at least once in a year to review the programs.

#### **CO** Assessment Tools:

The various assessment tools used to evaluate COs and the frequency with which the assessment processes are carried out are listed. In each course, the level of attainment of each CO is compared with the predefined targets, if is not the course coordinator takes necessary steps for the improvement to reach the target. With the help of CO against PO/PSO mapping, the PO/PSO attainment is calculated by the program coordinator.

Table: Mapping of assessment tools to POs/PSOs with frequency of Assessment

| Mode of<br>Assessment | Assessment<br>Tool                                 | Description Evaluation of course outcomes                                   |                                                                                                               | Related<br>PO/PSO | Frequency of Assessment |
|-----------------------|----------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|
| Direct                | Theory<br>internal<br>examinations/<br>Assignments | Two written examinations are conducted and its average marks are considered | The questions in the internal examinations and assignment sheets are mapped against COS of respective course. | PO1 to<br>PO12    | Continuous              |
| Direct                | Day to day<br>evaluation in<br>Laboratory          | The day-to-day<br>evaluation is<br>considered                               | The final attainment for each CO is calculated by taking                                                      | PO1 to<br>PO12    | Continuous              |
| Direct                | Internal<br>Practical<br>Examination               | Internal examination is conducted                                           | average of the % attainment<br>from day-to-day evaluation<br>and internal lab examination                     | PO1 to<br>PO12    | Two per semester        |
| Direct                | End Semester<br>Examination                        | End Examination is conducted                                                | Course The guestions for                                                                                      |                   | One per<br>semester     |
| Direct                | Summer<br>Internship                               | To test students' concepts in independent analysis.                         | Two internal project reviews are conducted and average of these two review assessments are considered         | PO1 to<br>PO12    | Summer<br>Internship    |

| Direct   | Project              | To test students' concepts in design creative thinking and independent analysis three project reviews are conducted | Continuous assessment is carried by the project review committee first review emphasizes on literature survey and problem identification, second review on design methodology and the third review on the validation of the model and documentation. The external examiner assessment is considered as another assessment tool for project work and final CO attainment calculated. | PO1 to<br>PO12 | Major Project-<br>VIII semester |
|----------|----------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------|
| Direct   | Technical<br>Seminar | To Test the students in knowledge in Recent Technical advancements and their Presentation Skills                    | At end of semester a student has to Present the seminar and submit the report                                                                                                                                                                                                                                                                                                       | PO1 to<br>PO12 | VIII Semester                   |
| Indirect | Alumni survey        | This survey gives<br>the opinion of the<br>student on the<br>attainment of<br>course outcomes                       | At the end of the program alumni survey is collected from alumni and considered for the PO attainment under indirect assessment.                                                                                                                                                                                                                                                    | PO1 to<br>PO12 | At the end of the program       |
| Indirect | Graduate exit survey | This survey gives the opinion of the graduate on the attainment of course outcomes                                  | At the end of the program exit survey is collected from alumni and considered for the PO attainment under indirect assessment.                                                                                                                                                                                                                                                      | PO1 to<br>PO12 | At the end of the program       |

#### Procedure followed while assigning the values by mapping COs to POs.

- Select action verbs for a CO from different Bloom's levels based on the importance of the particular CO for the given course.
- Stick on to single action verbs while composing COs and use for multiple action verbs if the need arises.
- Values to CO-PO (technical POs in particular) matrix are assigned by
- Judging the importance of the particular CO in relation to the POs. If the CO matches strongly with a particular PO criterion, then 3 is assigned, if it matches moderately then 2 is assigned or less than 1 is assigned else marked with "-" symbol.
- If an action verb used in a CO is repeated at multiple Bloom's levels, then reconsider which Bloom's level is the best fit for that action verb.

#### **Bloom's Taxonomy:**

Bloom's Taxonomy is a classification of the different outcomes and skills that educators set for their students (learning outcomes). The taxonomy was proposed in 1956 by Benjamin Bloom, an educational psychologist at the University of Chicago. The terminology has been recently updated to include the following six levels of learning. These 6 levels can be used to structure the learning outcomes, lessons, and assessments of your course.



- Remembering: Retrieving, recognizing, and recalling relevant knowledge from long-term memory.
- **Understanding:** Constructing meaning from oral, written, and graphic messages through interpreting, exemplifying, classifying, summarizing, inferring, comparing, and explaining.
- Applying: Carrying out or using a procedure for executing, or implementing.
- **Analyzing:** Breaking material into constituent parts, determining how the parts relate to one another and to an overall structure or purpose through differentiating, organizing, and attributing.
- Evaluating: Making judgments based on criteria and standards through checking and critiquing.
- **Creating:** Putting elements together to form a coherent or functional whole; reorganizing elements into a new pattern or structure through generating, planning, or producing.

Like other taxonomies, Bloom's is hierarchical, meaning that learning at the higher levels is dependent on having attained prerequisite knowledge and skills at lower levels. You will see Bloom's Taxonomy often displayed as a pyramid graphic to help demonstrate this hierarchy. We have updated this pyramid into a "cake-style" hierarchy to emphasize that each level is built on a foundation of the previous levels.



**Attainment Level:** Educational attainment refers to the highest level of education that a person has successfully completed. Successful completion of a level of education refers to the achievement of the learning objectives of that level, typically validated through the assessment of acquired knowledge, skills and competencies.

| Category-A                       | Level 3                              | Level 2                                       | Level 1                                       |
|----------------------------------|--------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Internal (MID I & MID II)/Survey | 60 % of students getting > 60% marks | 50-60 % of students<br>getting > 60%<br>marks | 40-50 % of students<br>getting > 60%<br>marks |
| Lab/Seminar/Project-<br>Internal | >80%                                 | 50-80%                                        | <50%                                          |
| Lab/Seminar/Project-<br>External | >70%                                 | 50-70-%                                       | <50%                                          |
| RTU                              | 50%-100% Marks                       | 50%-30% Marks                                 | 0%-30%                                        |
| Overall                          | 55-100%                              | 55-40%                                        | <40%                                          |



**Assessment:** A direct assessment program is a program that, in lieu of credit or clock hours as the measure of student learning, utilizes direct assessment of student learning, or recognizes the direct assessment of student learning by others.

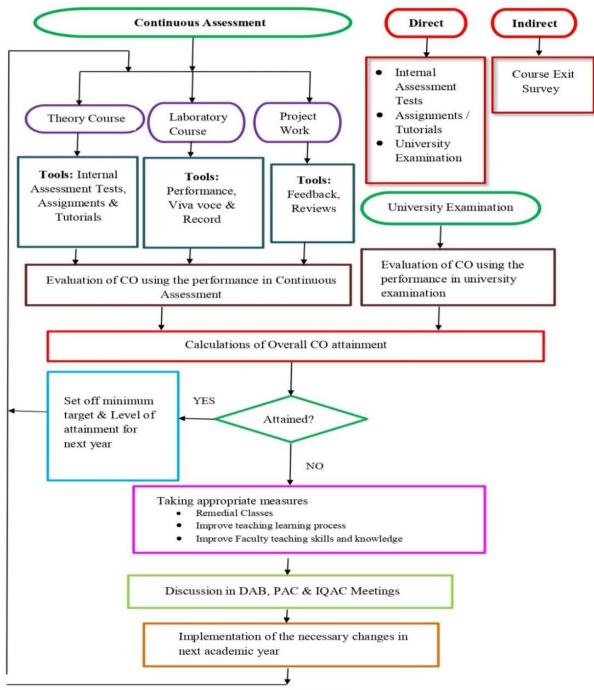



Figure 1 Process for CO Attainment



| Evaluation Methods                                     | Process                                                                                                                                                                                                                     |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Internal Assessment Tests                              | Two Internal Assessment Tests are conducted per semester to evaluate the attainment of course outcomes. Each question is mapped with COs and blooms level.                                                                  |
| Assignments & Tutorials                                | The tutorials and assignments are given to the students based on the subject nature. For four credit papers tutorials are mandatory. Tutorial and Assignment sheets are prepared by the faculty member with COs and levels. |
| Continuous Assessment & Model Exam (Laboratory Course) | The evaluation criteria for each experiment are based on performance, viva-voce and record mark. The attainment of COs is calculated through continuous assessment and model practical performance.                         |
| Project Reviews                                        | <ul> <li>Three reviews are conducted periodically to monitor and evaluate the progress of the project using project rubrics.</li> <li>Viva-Voce is conducted at the end of the semester as per university norms.</li> </ul> |
| University Examination                                 | At the end of each semester, final examination is conducted for Theory and Laboratory courses by University, in which question paper covers the entire syllabus and all the Cos are covered in the question papers.         |

**Table: Details of Direct Assessment** 

#### **Theory Courses:**

For each theory course, faculty member calculates the course outcome attainment using University Examination and Internal Assessment Test. The attainment level will be calculated based on the average performance levels of both University Examination and Internal Assessment Test. The evaluation process of Internal Assessment Tests/Assignments/Tutorials/Group Discussion is counted for 30% and the remaining 70% will be given for university examination. Based on the level of CO attainment, the faculty member will decide whether to increase the competency level or change the content delivery method, assessment methods to improve attainment level for the course.

| Assessment Tool              |                        |    | arks | Frequency           |  |
|------------------------------|------------------------|----|------|---------------------|--|
| CO Internal Assessment Tests |                        | 30 | 30   | Twice in a Semester |  |
| Attainment                   | University Examination | 70 | 120  | Once in a Semester  |  |

**Table: Details of CO Attainment** 



#### **Laboratory Courses:**

For laboratory courses, the course outcome will be calculated based on performance, viva-voce, record work and model practical examination with the weightage of 60% for Continuous Internal Assessment and 40 % weightage for University Practical Examination. Based on the CO attainment level, the faculty member will decide whether to increase the competency level or enhance the practical knowledge of the students in order to improve attainment level for the laboratory course.

| Assessment Tool |                                   | Weightage | Frequency          |
|-----------------|-----------------------------------|-----------|--------------------|
| СО              | Continuous Internal<br>Assessment | 60%       | Every Week         |
| Attainment      | University Practical Examination  | 40%       | Once in a Semester |

#### **Project Work Assessment:**

For project work, Continuous Internal Assessment is based on the performance in the three reviews. The Course Attainment is calculated based on the three reviews and project Viva voce.

- Project review is conducted every month to review the progress of the project and the second review will be conducted in the presence of an industry expert.
- Suggestions are given to the students for their continuous update and improvement. Evaluation of each review is based on the parameters discussed in teaching learning process.

The faculty member will decide the competency level and attainment level for project work considering the average performance level of the students.

#### PO/PSO Assessment Tools:

Evaluation of attainment of POs and PSOs is based on direct and indirect assessment tools. Direct assessment of POs and PSOs is based on students' performance in Continuous Assessments and University Examination. Indirect assessment is based on Program Exit Survey, Alumni Survey and Course Exit Survey (Theory and Practical).

#### **Direct Assessment:**

Using Program Outcomes prescribed by NAAC, the faculty member evaluates the Program Outcomes and Program Specific Outcomes through Internal Assessment Tests, Assignments / Tutorial and Group Discussion. PO will be evaluated by the CO-PO Mapping with the attainment value for each course. For each course, every faculty member decides the competency level and attainment level.

The following table shows the tools and process for direct PO attainment.

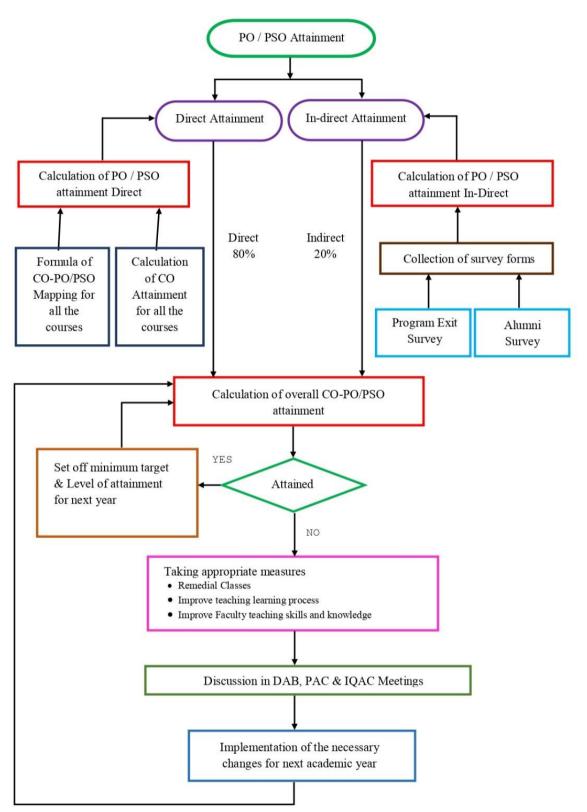



Figure 2 Process for PO/PSO Attainment

| PO Attainment             | Tools                                                                                                                                | Process                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | <ul> <li>Internal Assessment<br/>Test Assignments</li> <li>Tutorials</li> <li>Online Quiz</li> <li>University Examination</li> </ul> | <ul> <li>Assignments / Tutorials / online quizzes are given periodically for the entire course to attain the specific POs.</li> <li>Three Internal Assessment Tests are conducted per semester to evaluate the student performance.</li> <li>University Examination is conducted once in a semester as per University Schedule</li> </ul>                                                                          |
| Direct (CO<br>Attainment) | <ul><li>Performance</li><li>Viva Voce</li><li>Record</li><li>Presentation</li><li>Group Discussion</li></ul>                         | <ul> <li>Student Contribution in laboratory is evaluated based on<br/>the performance, Viva Voce, Presentation and Record<br/>Work.</li> <li>University Examination is conducted once in a semester<br/>as per University Schedule.</li> </ul>                                                                                                                                                                     |
|                           | Project Reviews                                                                                                                      | <ul> <li>Students are divided into batches. Each batch consists of three to four students.</li> <li>Supervisors are allotted for each group.</li> <li>Zeroth reviews are conducted for the students to identify the area of project.</li> <li>Three reviews are conducted periodically to monitor and evaluate the progress of the project.</li> <li>Viva-Voce is conducted at the end of the semester.</li> </ul> |

Table: Direct Assessment for CO-PO

#### **Indirect Assessment:**

The following tools are used to assess the indirect assessment of attainment of COs, POs and PSOs. The assessment tools listed are used for both CO, PO – PSO attainment calculation.

| S.No.                                  | Tools used for<br>Assessment<br>processes | Batch | Batch | Batch | Batch |  |  |
|----------------------------------------|-------------------------------------------|-------|-------|-------|-------|--|--|
|                                        | POs, PSOs Indirect Assessment Tools       |       |       |       |       |  |  |
| 1                                      | Program Exit<br>Survey                    | -     | -     | -     | -     |  |  |
| 2                                      | Alumni Survey                             | -     | -     | -     | -     |  |  |
| CO Attainment Indirect Assessment Tool |                                           |       |       |       |       |  |  |
| 3                                      | Course Exit<br>Survey                     | -     | -     | -     | -     |  |  |

Table: Indirect Assessment Tools

#### **Course Exit Survey (Theory & Practical):**

The course exit survey is process of collecting reviews on each course from the students at the end of each semester. It helps to improve the overall aspect of the course in future semesters. The survey covers the overall view about teaching and learning of the respective course. The survey form reveals the following attributes.

- Course Content- Quality of the content provided, incorporation of Outcome Based Education
- Course Delivery- Experience about the teaching methodologies, ICT tools, NPTEL resource utilization



- Course Assessment- Methodology of evaluation, feedbacks on assignments and tutorials
- General suggestions for improvement

#### **Program Exit Survey:**

It is a process of collecting satisfaction survey on the quality of education from the perspective of graduating students upon the completion of their program. Program Exit Survey is structured with 5 liker scale questions. The survey helps in identifying.

- Perception on the overall quality of teaching, learning and mentoring.
- Opinion about the support provided by the program in projects, modern tools and software's.
- Support provided for extra-curricular and co-curricular activities.
- Exposure to the competitive exams and personality development programs.
- Insight on imparting skills like entrepreneurship and societal responsibility through NSS, NGO and Club's Improvement on facilities.

#### **Alumni Survey:**

The alumni survey is conducted through the survey questionnaire after graduation towards the achievement of POs and PSOs. Survey form is structured with six sections with respect to,

- Personal information.
- Employment/higher studies/entrepreneurship- details.
- Technical, professional, communication and general skills at present towards RIT contribution.
- Experience at RIT in projects, extra-curricular, co-curricular activities, personality development, sports and NSS facilities.
- Suggestions for further improvement.
- Suggestions for bridging curriculum gap and other valuable inputs.

The following table shows the tools and process for Indirect PO attainment.

| PO attainment | Tools               | Process                                                                                                                   |
|---------------|---------------------|---------------------------------------------------------------------------------------------------------------------------|
| Indirect      | Program Exit Survey | On completion of program, feedback is obtained from each student about the entire program experience.                     |
|               | Alumni Survey       | During the alumni meet, graduation day the alumni survey is collected from the graduates based on the various parameters. |

Table: Indirect Assessment Process



#### **CHAPTER VI**

# PROGRAM SPECIFIC OUTCOMES (PSOs)

**Session: 2021-22** 

Program Specific Outcome are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve.

# **Bachelor of Technology Computer Engineering**

#### **PSO: 1 Software Development:**

The proficiency to understand, apply and analyze the concepts of various fields of computer engineering like programming languages, data structures, algorithms, operating systems, databases, web design, security, networking, cloud computing and open-source platform.

#### **PSO: 2 Computer Based Applied Science:**

Understanding and applying knowledge of various computer systems, such as architecture, electronics, and hardware design. This expertise is built upon a solid foundation in both basic and applied science, encompassing areas like mathematics, physics, and electrical engineering.

#### **PSO: 3 Career Skills:**

The skills to apply, analyze and evaluate industry best practices by developing innovative projects and acquaintance of attitude required to work professionally, for higher studies and research, and to be an entrepreneur.



# **Bachelor of Technology Artificial Intelligence & Data Science**

#### **PSO1: Artificial and Machine Intelligence Skills**

Empower graduates with a comprehensive skill set in software development, fostering their employability across varied industries to meet the dynamic demands in professional landscape

#### PSO2: Analytics & Basic sciences

Integrate principles from basic sciences, such as mathematics and statistics, to analyse and solve complex problems and give innovative solutions in AI and Data Science.

#### **PSO3: Carrier and Life Skills**

Master AI and Data Analytics to Innovate for Societal Impact, resolving complex issues with theoretical knowledge and practical tools.



# **Bachelor of Technology Civil Engineering**

#### **PSO: 1 Infrastructure Development:**

The graduates will have the ability to plan, design and quality execution of construction projects and ability to solve problems in the structural, construction management, hydraulics, geotechnical, transportation and environmental disciplines of civil engineering

#### PSO: 2 Civil & Basic Sciences:

The ability to acquire fundamental knowledge of mathematics, basic sciences, civil construction drafting software and fundamental of computers.

#### PSO: 3 Career & Life Adroitness:

Graduates will be able to cognizance of social awareness, interdisciplinary aspects and environmental necessity along with ethical responsibility to have a successful career and to become an entrepreneur.



# **Bachelor of Technology Electronics and Communication Engineering**

#### **PSO: 1 Communication Knowledge:**

Graduate possesses the proficiency to understand, analyze, and apply the concepts of various fields of electronics and communication engineering.

#### PSO: 2 Electronics and Basic Science:

Graduate is able to acquire fundamental knowledge of electronics and communication, mathematics, basic sciences, and computer.

#### PSO: 3 Career and life Skills:

Graduate is capable of analyzing, evaluating, and applying industry best practices by developing innovative projects, and attaining of attitude required to work professionally, for higher studies, research, and to be an entrepreneur.



# **Bachelor of Technology Electrical Engineering**

#### **PSO: 1 Power Engineering Skills:**

Graduate possesses the ability to deal with complex electrical power problems by using modern engineering tools for the benefit of the society and should be able to communicate the same professionally.

**PSO: 2 Electrical and Basic Sciences:** Graduate possesses the ability to apply fundamental knowledge of electrical power, basic sciences, mathematics, and computation to get the solutions of multi-disciplinary problems.

#### **PSO: 3 Career and Life Skills:**

Graduate possesses the skills to be either employable or develop entrepreneurship in the emerging areas like renewable and green energy, electric and hybrid vehicles and smart grids, and will be susceptive to life-long learnings.



#### **CHAPTER VII**

# COURSE OUTCOMES (COs) Session: 2021-22

Course outcomes (COs) are direct statements that describe the essential and enduring disciplinary knowledge, abilities that students should possess and the depth of learning that is expected upon completion of a course. They are clearly specified and communicated. The Course Outcomes are prepared by the course coordinator in consultation with concerned faculty members teaching the same course.

# Department of Applied Sciences Common for all branches in first year Program Name: Applied Sciences

Subject/Code No: Communication Skills & 1FY1-04
Semester: I / II semester
Course Outcome

| CO Number | CO Definition                                                                                                                                                                                                 |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CO1       | Comprehend the fundamental Principles, Types, and Methods of good communication.                                                                                                                              |  |
| CO2       | Apply the basic structural and grammatical knowledge of the constituents for technical writing.                                                                                                               |  |
| CO3       | Develop the competence in writing skills related to various forms of technical and business communication n                                                                                                   |  |
| CO4       | Understand the genre of prose by reading loudly with correct pronunciation, stress intonation, and articulation of voice along with identifying and describing the connection between Literature and reality. |  |
| CO5       | Develop the creativity and imagination through value-based genre of poetry by enhancing aesthetic and verbal ability.                                                                                         |  |



# Subject/Code No: Human Values & 1FY1-05/2FY1-05 Semester: I / II semester Course Outcome

| CO Number | CO Definition                                                                                                    |
|-----------|------------------------------------------------------------------------------------------------------------------|
| CO1       | Comprehend co-relationship between "Values"; and "skills" to ensure persistent happiness and prosperity.         |
| CO2       | Evaluate the coexistence of the Human Being - Harmony in Myself.                                                 |
| CO3       | Identify the role of harmony in family, society and universal order.                                             |
| CO4       | Develop and evaluate the holistic perception of harmony at all levels of existence.                              |
| CO5       | Create harmony in professional and personal lives by understanding Co-existence between human being with nature. |

### Subject/Code No: Engineering Mathematics-I & 1FY2-01

Semester: I semester Course Outcome

| CO Number | CO Definition                                                                                                                                                             |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Learn the concept of calculus to appraise improper integral, surface area and volume of solid of revolution of various laminas.                                           |
| CO2       | Differentiate the different techniques for convergence of sequence and series.                                                                                            |
| CO3       | Analyze continuity, differentiability to solve the periodically extended function over the range using the concept of Fourier series.                                     |
| CO4       | Application of Partial differentiation, problem-solving using concepts and techniques from PDE's.                                                                         |
| CO5       | Apply the concept of calculus to double integrals and change of variables Application of Multiple integration involving cubes, sphere, theorem of green gauss and stokes. |

## Subject/Code No: Engineering Mathematics-II & 2FY2-01 Semester: II semester

| CO Number | CO Definition                                                                                                                                                                                        |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Comprehend the computational techniques and algebraic skills essential for the study of systems of linear equations, matrix algebra, Eigen values, Eigen vectors, orthogonality and diagonalization. |
| CO2       | Recognize ODEs and interpret the various methods for solving differential equation of first order and first degree.                                                                                  |
| CO3       | Differentiate the various applications of function of one variable in ODE of higher order.                                                                                                           |
| CO4       | Evaluate the multivariable function using the concept of PDEs of first order.                                                                                                                        |
| CO5       | Apply the various uses of multivariable function and solve by the partial differential equation of higher order.                                                                                     |

# Subject/Code No: Engineering Physics & 1FY2-02 /2FY2-02 Semester: II semester Course Outcome

| CO Number | CO Definition                                                                                                                                                 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Comprehend the concepts of wave optics and phenomenon of interference and diffraction of light.                                                               |
| CO2       | Recognize ODEs and interpret the various methods for solving differential equation of first order and first degree.                                           |
| CO3       | Apply the conceptual knowledge of coherence of light wave in different application of light wave and use in optical fiber communication.                      |
| CO4       | Synthesize the scientific and engineering principles of materials science to identify the properties of material related to appropriate field of application. |
| CO5       | Apply the laws of electromagnetic theory in propagation of wave and use in communication.                                                                     |

# Subject/Code No: Engineering Chemistry &1FY2-03 /2FY2-03 Semester: I / II semester Course Outcome

| CO Number | CO Definition                                                                                                                                                                                              |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Describe the fundamental water quality for domestic and industrial purpose so that students will be able to describe impurities present in water, boiler troubles and removal of impurities.               |
| CO2       | Analyse the composition, characteristics and manufacturing methods of various types of solid, liquid and gaseous fuels and calculated calorific value of fuels for Industrial as well as domestic purposes |
| CO3       | Classify the dry and wet corrosion mechanisms and their protection methods. To investigate deterioration of metal through corrosion                                                                        |
| CO4       | Understand the composition and manufacturing methods of engineering materials namely cement and glass and recognize and estimate various properties of lubricants in several engineering process.          |
| CO5       | Generating the generic drugs or medicines for various services in life long purpose by identifying the applications of organic reaction mechanism.                                                         |



#### Subject/Code No: Programming for Problem Solving & 1FY3-06/2FY3-06

Semester: I / II semester Course Outcome

| CO Number | CO Definition                                                                                                             |
|-----------|---------------------------------------------------------------------------------------------------------------------------|
| CO1       | Understand the fundamental concepts of computers, algorithms, flowcharts and problem-solving techniques.                  |
| CO2       | Translate the algorithms and flowcharts into C programs.                                                                  |
| CO3       | Analyse the debug process in C programming language and to express in written form.                                       |
| CO4       | Formulate a problem into functions and create modular code that can be reused.                                            |
| CO5       | Develop C programs to demonstrate the applications of derived data types such as arrays, pointers, strings and functions. |

#### Subject/Code No: Basic Mechanical Engineering & 1FY3-07/2FY3-07

Semester: I / II semester Course Outcome

| CO Number | CO Definition                                                                                                                  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Understand the concepts of thermodynamics, power plants, machine design, Manufacturing Engineering and Industrial Engineering. |
| CO2       | Receive the basic knowledge of pump and IC engine.                                                                             |
| CO3       | Comprehend the concept, types and application of refrigerator and air conditioning system and Transmission of Power.           |
| CO4       | Explain the different Patterns, Molding, Casting, Forging and Extrusion of Primary Manufacturing Processes.                    |
| CO5       | Describe the various process and uses of Welding, Brazing, Engineering materials and Heat treatment of steel.                  |

#### Subject/Code No: Basic Electrical Engineering & 1FY3-08/2FY3-08

Semester: I / II semester Course Outcome

| CO Number | CO Definition                                                                                                              |
|-----------|----------------------------------------------------------------------------------------------------------------------------|
| CO1       | Evaluate the concept and process of various AC and DC circuit related elements, sources, laws, methods and theorems.       |
| CO2       | Explore the knowledge of transformers and its uses in applying the acquired knowledge to solve electrical circuit problem. |
| CO3       | Analyse the characteristics, significance, construction and working of various power electronic devices.                   |
| CO4       | Understand electromechanical energy conversion process.                                                                    |
| CO5       | Explore knowledge of protective devices and energy consumption calculations.                                               |

#### Subject/Code No: Basic Civil Engineering & 1FY3-09/2FY3-09

Semester: I / II semester Course Outcome

| CO Number | CO Definition                                                                                                                                                                                                          |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Understanding the scope, specialization, and role of civil engineer with impact of infrastructural development on economy of country.                                                                                  |
| CO2       | Explain the Object, Principles & Types of Surveying, Analyses the Linear Measurements of surveying and evaluates the angular measurement through compass and leveling process through the various leveling instrument. |
| CO3       | Analyse the importance of site selection, type of building Layout and Plan with introduction and components of Buildings & their functions.                                                                            |
| CO4       | Understanding the traffic and road safety and evaluate the Modes of Transportation, Causes of Accidents and Create the Road Safety Measures.                                                                           |
| CO5       | Classify the different types of pollutions, understand the Rainwater Harvesting, Global warming, Climate Change and solid Waste Management, Analyse the Primary and Secondary air                                      |

#### Subject/Code No: Engineering Chemistry Lab & 1/2FY2-21

Semester: I / II semester Course Outcome

| CO Number | CO Definition                                                                                                                                                                      |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Evaluate the strength of CuSO4.5H2O solution with the help of Hypo solution, Ferrous Ammonium Sulphate solution with the help of K2Cr2O7 solution and NaOH and Na2CO3 in an alkali |
| CO2       | Analyse different properties of lubricating oil.                                                                                                                                   |
| CO3       | Analyse quality of coal by proximate analysis.                                                                                                                                     |
| CO4       | Evaluate various quality parameters of water like harness, DO, Chlorine in water                                                                                                   |
| CO5       | Understand about synthesis of generic drugs.                                                                                                                                       |

Subject/Code No: Engineering Physics Lab & 1/2FY2-20

Semester: I / II semester
Course Outcome

| O di so O di come |                                                                                                                           |
|-------------------|---------------------------------------------------------------------------------------------------------------------------|
| CO Number         | CO Definition                                                                                                             |
| CO1               | Understand the fundamental concepts of wave optics through the interference and diffraction experiment                    |
| CO2               | Analyse the concept of light in dispersive power of material and height of a celestial object.                            |
| CO3               | Describe and demonstrate the behavior of semiconductor characteristics.                                                   |
| CO4               | Applying the knowledge to show the charging and discharging behavior of capacitor with time in form of electrical energy. |
| CO5               | Interpret the properties of Laser light and application in optical communication through optical fiber.                   |

#### Subject/Code No: Human Values Activities and Sports & 1/2FY1-23 Semester: I / II semester

**Course Outcome** 

| CO Number | CO Definition                                                                                                          |
|-----------|------------------------------------------------------------------------------------------------------------------------|
| CO1       | Course Introduction-Need, Basic Guidelines, Content and Process for Value Education                                    |
| CO2       | Understanding Harmony in the Human Being - Harmony in Myself                                                           |
| CO3       | Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship                                   |
| CO4       | Understanding Harmony in the Nature and Existence - Whole existence as Coexistence                                     |
| CO5       | Implications of the above Holistic Understanding of Harmony on Professional Ethics. Natural acceptance of human values |

#### Subject/Code No: Language Lab &1/ 2FY1-22

Semester: I / II semester Course Outcome

| CO Number | CO Definition                                                                           |
|-----------|-----------------------------------------------------------------------------------------|
| CO1       | To understand Phonetic Symbols and Transcriptions                                       |
| CO2       | To enable students to participate in Extempore                                          |
| CO3       | To enable students to participate in Group Discussion                                   |
| CO4       | To improve writing skills of students by Dialogue Writing                               |
| CO5       | To use LSRW skills successfully for leadership and teamwork to crack GD's and interview |

#### Subject/Code No: Manufacturing Practices Workshop &1/2FY3-25

Semester: I / II semester Course Outcome

| CO Number | CO Definition                                                                                                                                           |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Understand various tools, materials, instruments required for workshop operations.                                                                      |
| CO2       | Apply techniques to perform workshop operations with hand tools and power tools such as center lathe machine, drilling machine using given job drawing. |
| CO3       | Understand application of the hand tools used in fitting, carpentry, foundry, welding shop, machine tools and sheet metal shop                          |
| CO4       | Write a report related to hand tools and machine tools description referring to library books and laboratory manuals.                                   |
| CO5       | Apply safety consciousness along with team work.                                                                                                        |



# Subject/Code No: Computer Programming Lab & 1/2FY3-24 Semester: I / II semester Course Outcome

| CO Number | CO Definition                                                                                                                           |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Understand and describe the structure of a C program to explain, write, compile and execute programs using input and output statements. |
| CO2       | Classify and write programs by applying the decision control statements and loop control statements using different operators.          |
| CO3       | Formulate, analyze and solve the problem by writing programs using pointers, arrays and strings.                                        |
| CO4       | Design object-based programs by creating new data type using structure and union.                                                       |
| CO5       | Understand and use the concept of functions and file operations; moreover, design new functions to solve module driven problems.        |

#### Subject/Code No: Basic Civil Engineering Lab & 1/2FY3-27

Semester: I / II semester Course Outcome

| CO Number | CO Definition                                                                                 |
|-----------|-----------------------------------------------------------------------------------------------|
| CO1       | Describe various sanitary fittings and water supply fittings.                                 |
| CO2       | Examine pH, Turbidity, Hardness and Total solids of given water sample.                       |
| CO3       | Use of EDM and Total Station in the field.                                                    |
| CO4       | Investigate the linear and angular measurements of the points on the ground and levelling.    |
| CO5       | Students will show an ability to communicate effectively and work as a team member ethically. |

#### Subject/Code No: Basic Electrical Engineering Lab & 1/2FY3-26

Semester: I / II semester
Course Outcome

| CO Number | CO Definition                                                                                                                                                                                                                                       |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Utilize a Cathode Ray Oscilloscope (CRO), along with various meters, to identify and observe the functioning of electronic components such as resistors, inductors, capacitors, diodes, diac, triac, transistors, and thyristors.                   |
| CO2       | Measure the no-load current waveform using an oscilloscope and calculate transformer voltages, currents, power, and efficiency                                                                                                                      |
| CO3       | Conduct various three-phase transformer connections to Analyse voltage and current relationships, while recording phase shifts between the primary and secondary sides.                                                                             |
| CO4       | Recognize the operational characteristics, cut-out sections, and speed behavior of DC machines, synchronous machines, single-phase, and three-phase induction machines                                                                              |
| CO5       | Create a torque-speed curve for a separately excited DC motor, examine the operation of DC-DC converters, DC-AC converters, and DC-AC converters for induction motor speed control, while providing an overview of the components in LT switchgear. |



# Subject/Code No: Computer Aided Engineering Graphics & 1FY3-28 Semester: I semester Course Outcome

| CO Number | CO Definition                                                                                              |
|-----------|------------------------------------------------------------------------------------------------------------|
| CO1       | Discuss the concept of engineering terminology, engineering scales and conic sections.                     |
| CO2       | Apply the necessary skills in drawing and explaining orthographic projection of points, lines, and planes. |
| CO3       | Understand and Draw projections of solids                                                                  |
| CO4       | Draw and classify the sections of solids.                                                                  |
| CO5       | Explain various commands and create drawing in AutoCAD.                                                    |

### Subject/Code No: Computer Aided Machine Drawing & 2FY3-29

## Semester: Il semester Course Outcome

| CO Number | CO Definition                                                                                                                                        |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Recall and understand the conventional representation of machine components and material, types of lines & dimensioning.                             |
| CO2       | Explain concept of first and third angle projections and prepare drawing of simple machine elements, sectional views for various parts and assembly. |
| CO3       | Draw and explain various types of temporary and permanent fasteners.                                                                                 |
| CO4       | Draw free hand sketches of lines, materials and various components i.e. bearings, couplings, welded joints, pipe joints, valves etc.                 |
| CO5       | Differentiate among the various commands and create 2D computer aided drawing software.                                                              |

### **Bachelor of Technology Computer Engineering**

**Program Name: Computer Engineering** 

Subject/Code No: Advanced Engineering Mathematics/3CS2-01 LTP: 3L+0T+0P Semester: 3rd

**Course Outcome** 

| CO Number | CO Definition                                                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Recall and understand the fundamental concepts of probability and standard distributions which can describe real life phenomenon. |
| CO2       | Analyze the various method of numerical solutions of Normal, Poisson and Binomial probability distribution.                       |
| CO3       | Formulate the optimization problems in mathematical form with classification.                                                     |
| CO4       | Interpret non-linear optimization problems and solve by appropriate methods.                                                      |
| CO5       | Demonstrate linear optimization problems and solve by standard methods.                                                           |

Subject/Code No: Technical Communication/3CS1-02 LTP: 2L+0T+0P Semester: 3rd Course Outcome

| CO Number | CO Definition                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------|
| CO1       | Understand the process of technical communication in terms of LSRW.                                       |
| CO2       | Apply the concept of Technical Materials/Texts in various technical documents.                            |
| CO3       | Enhance the skills in the process of technical communication in terms of LSRW.                            |
| CO4       | Implement the basic concepts of technical communication in Technical Reports, articles and their formats. |

Subject/Code No: Digital Electronics/3CS3-04 LTP: 3L+0T+0P Semester: 3rd Course Outcome

| CO Number | CO Definition                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Demonstrate basic principles of digital circuits and different number systems                                                                                                                                   |
| CO2       | Distinguish logic expressions and circuits using Boolean laws and K-map                                                                                                                                         |
| CO3       | Differentiate types of digital electronic circuits and also the different logic families involved in the digital system to prepare the most simplified circuits using various mapping and mathematical methods. |
| CO4       | Design various types of memoryless element digital electronic circuits for particular operation within the realm of economic, performance, efficiency, user friendly and environmental constraints.             |
| CO5       | Design various types of memory element digital electronic circuits for particular operation within the realm of economic, performance, efficiency, user friendly and environmental constraints.                 |

#### Subject/Code No: Data Structures and Algorithms/3CS4-05 LTP: 3L+0T+0P Semester: 3rd Course Outcome

| CO Number | CO Definition                                                                                  |
|-----------|------------------------------------------------------------------------------------------------|
| CO1       | Recognize fundamental Stack operations to address a range of engineering problems.             |
| CO2       | Relate the principles of Queues and Linked Lists to offer solutions for computer-based issues. |
| CO3       | Discover different Search and Sorting methods to rationalize their application in diverse      |
| CO4       | Practice the concept of Trees and their operations to furnish valid solutions.                 |
| CO5       | Compare a variety of techniques that can be employed with Graphs and Hashing.                  |

## Subject/Code No: Object Oriented Programming/3CS4-06 LTP: 3L+0T+0P Semester: 3rd

**Course Outcome** 

| CO Number | CO Definition                                                                                                                      |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Describe the Object-Oriented Programming paradigm with the concept of objects and classes.                                         |
| CO2       | Explain the memory management techniques using constructors, destructors and pointers                                              |
| CO3       | Classify and demonstrate the various Inheritance techniques.                                                                       |
| CO4       | Understand how to apply polymorphism techniques on the object-oriented problem.                                                    |
| CO5       | Summarize the exception handling mechanism, file handling techniques and Use of generic programming in Object oriented programming |

#### Subject/Code No: Software Engineering/3CS4-07 LTP: 3L+0T+0P Semester: 3rd Course Outcome

| CO Number | CO Definition                                                                                        |
|-----------|------------------------------------------------------------------------------------------------------|
| CO1       | Recognize different software life cycle models and testing techniques to develop real time projects. |
| CO2       | Identify cost estimation and risk analysis in project management.                                    |
| CO3       | Interpret and deduce the engineering process of software requirement analysis.                       |
| CO4       | Apply procedural design methods to architect software systems.                                       |
| CO5       | Collaborate the concept of object-oriented analysis and design in software development process.      |

## Subject/Code No: Data Structures and Algorithms Lab/3CS4-21 LTP: 0L+0T+3PSemester:3rd Course Outcome

| CO Number | CO Definition                                                                                               |
|-----------|-------------------------------------------------------------------------------------------------------------|
| CO1       | Recognize fundamental Stack and Queue operations to address a range of engineering                          |
| CO2       | Relate the principles of Linked Lists to offer solutions for computer-based issues.                         |
| CO3       | Discover different Search and Sorting methods to rationalize their application in diverse                   |
| CO4       | Devise diverse operations on non-linear data structures such as trees and graphs.                           |
| CO5       | Propose a solution for a provided engineering problem utilizing Stack, Queue, Linked List, Tree and Sorting |

## Subject/Code No: Object Oriented Programming Lab/3CS4-22 LTP: 0L+0T+3P Semester: 3rd

**Course Outcome** 

|           | Course Outcome                                                           |  |
|-----------|--------------------------------------------------------------------------|--|
| CO Number | CO Definition                                                            |  |
| CO1       | Create and explain Basic C++ Program using i/o variables and structures. |  |
| CO2       | Apply object-oriented programming concepts using class and objects       |  |
| CO3       | Design and assess the classes for code reuse                             |  |
| CO4       | Analysis and apply the generic classes concepts in programming problem   |  |
| CO5       | Illustrate and evaluate the file Input Output mechanisms                 |  |

#### Subject/Code No: Software Engineering Lab/3CS4-23 LTP: 0L+0T+3P Semester: 3rd **Course Outcome**

| CO Number | CO Definition                                                                                                                                                                                                          |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Observe the requirements specification, function-oriented design using Software Analysis and Software Design of given project and relate the use of appropriate CASE tools and other tools in the software life cycle. |
| CO2       | Translate Software Requirements Specification (SRS) for a given problem in IEEE template.                                                                                                                              |
| CO3       | Select DFD model (level-0, level-1 DFD and Data dictionary) of the project.                                                                                                                                            |
| CO4       | Prepare all Structure and Behavior UML diagram of the given project.                                                                                                                                                   |
| CO5       | Test/Evaluate "Project Libre" a project management software tool to manage files.                                                                                                                                      |

#### Subject/Code No: Digital Electronics Lab/3CS4-24 LTP: 0L+0T+3P Semester: 3rd **Course Outcome**

| CO Number | CO Definition                                                                                                    |
|-----------|------------------------------------------------------------------------------------------------------------------|
| CO1       | Demonstrate the basics of logic gates.                                                                           |
| CO2       | Demonstrate basic combinational circuits and verify their functionalities.                                       |
| CO3       | Apply the working mechanism and design guidelines of different sequential circuits in the digital system design. |
| CO4       | Construct different types of counters for real time digital systems.                                             |
| CO5       | Distinguish the different types of shift registers.                                                              |

#### Subject/Code No: Discrete Mathematics Structure/4CS2-01 LTP: 3L+0T+0P Semester: 4th Course Outcome

| CO Number | CO Definition                                                                                                                                       |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Describe basic concept of Sets, Relations, Functions and Discrete Structure and apply appropriate methods to solve the problems.                    |
| CO2       | Describe the concept of mathematical logic to create the problem in appropriate form and test for validity of the problem.                          |
| CO3       | Apply fundamental mathematical concepts such as sets, relations, Combinatorics technique to formulate the problems and solve by appropriate method. |
| CO4       | Interpret the concept of groups, ring and field to analyze the complex problems.                                                                    |
| CO5       | Demonstrate the model of real-world problems using concept of Graph and solve the problems by standard result and graph algorithms.                 |

## Subject/Code No: Managerial Economics and Financial Accounting/4CS1-03 LTP: 2L+0T+0P Semester: 4th Course Outcome

| CO Number | CO Definition                                                                                                                                                                               |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Recognize and describe the fundamental concepts of Economics and Financial Management and define the meaning of national income, demand, supply, cost, market structure, and balance sheet. |
| CO2       | Calculate and classify the domestic product, national product and elasticity of price on demand and supply.                                                                                 |
| CO3       | Draw the cost graphs, revenue graphs and forecast the impact of change in price in various perfect as well as imperfect market structures.                                                  |
| CO4       | Compare the financial statements to interpret the financial position of the firm and evaluate the project investment decisions.                                                             |
| CO5       |                                                                                                                                                                                             |

#### Subject/Code No: Microprocessor & Interfaces/4CS3-04 LTP: 3L+0T+0P Semester: 4th Course Outcome

| CO Number | CO Definition                                                                                                                                                        |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Classify the basic operations of Microprocessor and microcontroller using their pin and architectural diagram, and also about area of manufacturing and performance. |
| CO2       | Practice of Knowledge about programming proficiency, using various addressing modes and data transfer instructions of microprocessor and microcontroller.            |
| CO3       | Evaluate the measures of Assembly Language Programming.                                                                                                              |
| CO4       | Discriminate the interfacing of various circuits with microprocessor.                                                                                                |
| CO5       | Compare the different programming logic applications with 8085 microprocessors.                                                                                      |



#### Subject/Code No: Database Management System/4CS4-05: LTP: 3L+0T+0P Semester: 4th Course Outcome

| CO Number | CO Definition                                                                                                                                 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Tabulate Database System with the help of Entity Relationship Diagram that visualizes a database system implemented in a real-world scenario. |
| CO2       | Apply data deduction and manipulation techniques using query languages on a variety of databases.                                             |
| CO3       | Use normal forms in the process of enhancing the database schema through refinement techniques.                                               |
| CO4       | Create transaction plans incorporating diverse scheduling types.                                                                              |
| CO5       | Generalize and assess the effectiveness of concurrency control mechanisms and recovery systems.                                               |

#### Subject/Code No: Theory of Computation/4CS4-06: LTP: 3L+0T+0PSemester:4th Course Outcome

| CO Number | CO Definition                                                                                                                                                                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Apply the knowledge of different types of grammar; he/she can analyze the all types of grammar and evaluate the relationship among them.                                            |
| CO2       | Differentiate the concept of regular expression and finite automaton and apply the knowledge to compare the procedure for writing regular expression for an automaton or vice versa |
| CO3       | Apply the knowledge of Context Free grammar; he/she can generate the Context free grammar and Pushdown Automaton for evaluating the CFG.                                            |
| CO4       | Apply the knowledge of Turing Machine he/she can analyze the Type-0 grammar and can design and evaluate the Turing Machine                                                          |
| CO5       | Apply the knowledge of Pumping Lemma Theorem students can check whether the given grammar Regular grammar/Context Free Grammar or not                                               |

#### Subject/Code No: Data Communication and Computer Networks/4CS4-07 LTP: 3L+0T+0P Semester: 4th Course Outcome

| CO Number | CO Definition                                                                                                                                                                                            |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Able to identify the principles of layered protocol architecture; be able to recognize and generalize the system functions in the correct protocol layer and further illustrate how the layers interact. |
| CO2       | State and cite mathematical problems for data-link and network protocols.                                                                                                                                |
| CO3       | Use network layer protocols and calculate number of subnets required for a network.                                                                                                                      |
| CO4       | Compute the reliability of data transfer over transport layer by glossy channel bit errors problem.                                                                                                      |
| CO5       | Select and plan for common services, system services, such as name and address lookups, and communications applications.                                                                                 |

#### Subject/Code No: Microprocessor & Interfaces Lab/4CS4-21 LTP: 0L+0T+2PSemester:4th Course Outcome

| CO Number | CO Definition                                                                                                                  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Analyze the fundamentals of assembly level programming                                                                         |
| CO2       | Apply interfacing concept between input and output devices.                                                                    |
| CO3       | Elaborate the interfacing of various other devices with microprocessor.                                                        |
| CO4       | Compose the various programs on different problems using Assembly Language Programming.                                        |
| CO5       | Implement standard microprocessor real time interfaces including digital-to-analog converters and analog-to-digital converters |

#### Subject/Code No: Database Management System Lab/4CS4-22 LTP: 0L+0T+3P Semester: 4th Course Outcome

| Oddisc Odcome |                                                                                                                         |
|---------------|-------------------------------------------------------------------------------------------------------------------------|
| CO Number     | CO Definition                                                                                                           |
| CO1           | Create and execute a database schema for a specified problem domain.                                                    |
| CO2           | Manage integrity constraints within a database using a relational database management system (RDBMS).                   |
| CO3           | Construct and devise a graphical user interface (GUI) application using a fourth-generation programming language (4GL). |
| CO4           | Composing PL/SQL code encompassing stored procedures, stored functions, cursors, and packages.                          |
| CO5           | Produce SQL and Procedural interfaces to SQL comprehensively.                                                           |

#### Subject/Code No: Network Programming Lab/4CS4-23 LTP: 0L+0T+3PSemester:4th Course Outcome

| CO Number | CO Definition                                                                                   |
|-----------|-------------------------------------------------------------------------------------------------|
| CO1       | Identify the functioning of various networking equipment's                                      |
| CO2       | Illustrate the LAN Installation techniques and Configurations techniques                        |
| CO3       | Solving various Error correcting techniques and framing methods                                 |
| CO4       | Practice the programs for client and server involving UDP/TCP sockets using socket programming. |
| CO5       | Estimate the communication between client and server using Network Simulator.                   |

#### Subject/Code No: Linux Shell Programming Lab/4CS4-24 LTP: 0L+0T+2P Semester: 4th Course Outcome

| CO Number | CO Definition                                                                                  |
|-----------|------------------------------------------------------------------------------------------------|
| CO1       | Summarize the concepts and commands in UNIX.                                                   |
| CO2       | Construct the directory layout of a typical UNIX system, maintain, and secure UNIX directories |
| CO3       | Illustrate the knowledge to use the several shell quoting mechanisms correctly.                |
| CO4       | Construct regular expression using filters and various commands to express the patterns.       |
| CO5       | Write simple scripts to develop basic command output.                                          |

#### Subject/Code No: Java Lab/4CS4-25 LTP: 0L+0T+2P Semester: 4th Course Outcome

| CO Number | CO Definition                                                                                                                                              |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Express and restate fundamentals of java, and tools for program designing environments.                                                                    |
| CO2       | Construct classes and implement the principles of method overloading, inheritance, and access controls within those classes.                               |
| CO3       | Develop Java packages and incorporate the concept of interfaces, along with importing these packages in Java.                                              |
| CO4       | Formulate the application by managing file operations, handling exceptions, and implementing threads.                                                      |
| CO5       | Create applications utilizing Java applets and design various polygons. This task involves the application of knowledge and the synthesis of design skills |

#### Subject/Code No: Information Theory & Coding/5CS3-01 LTP: 2L+0T+0P Semester: 5th Course Outcome

| CO Number | CO Definition                                                           |
|-----------|-------------------------------------------------------------------------|
| CO1       | Solve the theory algebra and linear algebra in source coding            |
| CO2       | Create channel performance using information theory                     |
| CO3       | Manipulate linear block codes for error detection and error correction. |
| CO4       | Modify Cyclic codes for error detection and error correction.           |
| CO5       | Discover convolution codes for performance analysis.                    |

#### Subject/Code No: Compiler Design/5CS4-02 LTP: 3L+0T+0P Semester: 5th Course Outcome

| CO Number | CO Definition                                                                     |
|-----------|-----------------------------------------------------------------------------------|
| CO1       | Illustrate the different phases of compiler to understand it's working.           |
| CO2       | Use and execute different types of parsing algorithm                              |
| CO3       | Distinguish different types of Intermediate code generations.                     |
| CO4       | Summarize different types of storage organization techniques.                     |
| CO5       | Dissect the issues in code generator's design and basic block control flow graph. |

#### Subject/Code No: Operating Systems/5CS4-03 LTP: 3L+0T+0P Semester: 5th Course Outcome

| CO Number | CO Definition                                                                                                                                                             |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Analyze the concept of Operating Systems, including their essential significance and fundamental operational processes.                                                   |
| CO2       | Utilize process scheduling techniques and inter-process communication strategies to evaluate their effectiveness in resolving real-world classical problems.              |
| CO3       | Analyzing Memory Management Techniques and Page Replacement Algorithms leads to the formulation of Free Space Management with the concept of virtual memory.              |
| CO4       | Evaluate Memory Management Techniques and Page Replacement Algorithms to formulate Free Space Management, integrating virtual memory, and showcasing critical assessment. |
| CO5       | Illustrate understanding of File Systems, Input/output Systems, and diverse disk scheduling algorithms through case studies                                               |

#### Subject/Code No: Computer Graphics & Multimedia/5CS4-04 LTP: 3L+0T+0P Semester: 5th Course Outcome

| CO Number | CO Definition                                                                                                                           |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Understand and apply basics about computer graphics along with graphics standards.                                                      |
| CO2       | Explain and analyses various algorithms to scan, convert the basic geometrical primitives, Area filling.                                |
| CO3       | Explain, illustrate and design various algorithms for 2D transformations and clipping.                                                  |
| CO4       | Understand various color models in computer graphics system and develop animated motions through.                                       |
| CO5       | To understand the fundamentals concepts of parallel and perspective projections and evaluate various algorithms for 3D transformations. |

#### Subject/Code No: Analysis of Algorithm/5CS4-05 LTP: 3L+0T+0P Semester: 5th Course Outcome

| CO<br>Number | CO Definition                                                                                       |
|--------------|-----------------------------------------------------------------------------------------------------|
| CO1          | Observe the accuracy and efficiency of the algorithm.                                               |
| CO2          | Associate Dynamic Programming to address real-time challenges.                                      |
| CO3          | Construct and practice different pattern matching algorithms and the assignment problem.            |
| CO4          | Estimate the effectiveness of randomized algorithms through Min-Cut, 2-SAT, and similar techniques. |
| CO5          | Anticipate algorithmic tendencies and the notion of diverse algorithm categories.                   |

#### Subject/Code No: Wireless Communication (Elective)/5CS5-11 LTP: 2L+0T+0P Semester: 5th Course Outcome

| CO Number | CO Definition                                                                                           |
|-----------|---------------------------------------------------------------------------------------------------------|
| CO1       | Recognizing Mobile Radio Propagation, Fading, Diversity Concepts and Channel Modeling.                  |
| CO2       | Relate the concept of cellular system and their technical challenges.                                   |
| CO3       | Correlate the Digital Signaling concept with fading channels.                                           |
| CO4       | Estimate the equalization techniques in wireless communication and error probability in faded channels. |
| CO5       | Summarize the impacts of Design Parameters, Beam Forming and MIMO Systems in wireless communication.    |

## Subject/Code No: Computer Graphics & Multimedia Techniques Lab/5CS4-21 LTP: \_0L+0T+2P Semester: 5th Course Outcome

| CO Number | CO Definition                                                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Understand and apply the various predefined functions for drawing various geometric shapes                                        |
| CO2       | Explain and analyze various algorithms to scan, convert the basic geometrical primitives, transformations, Area filling, clipping |
| CO3       | Explain, illustrate and design various kinds of viewing and Projections.                                                          |
| CO4       | Explain, illustrate and design various kinds of clipping techniques                                                               |
| CO5       | Define, explain and apply various concepts associated with computer graphics to develop the animated game                         |

#### Subject/Code No: Compiler Design Lab/5CS4-22 LTP: 0L+0T+2P Semester: 5th Course Outcome

| CO Number | CO Definition                                                                      |
|-----------|------------------------------------------------------------------------------------|
| CO1       | Recognize the various forms of tokens and lexemes                                  |
| CO2       | Calculate scanning by using the concept of finite state automation, parse          |
| CO3       | Arrange intermediate code for various statements in a programming language concept |
| CO4       | Organize the storage for heap structure                                            |
| CO5       | Construct various language patterns using flex tools they are also able to parse.  |

#### Subject/Code No: Analysis of Algorithm Lab/5CS4-23 LTP: 0L+0T+2P Semester: 5th

**Course Outcome** 

| CO Number | CO Definition                                             |
|-----------|-----------------------------------------------------------|
| CO1       | Observe the complexity of fundamental algorithms.         |
| CO2       | Relate sorting algorithms in real-world scenarios.        |
| CO3       | Construct a binary search tree using assorted algorithms. |
| CO4       | Test algorithms for finding minimum spanning trees.       |
| CO5       | Appraise algorithms for pattern matching.                 |

#### Subject/Code No: Advance Java Lab/5CS4-24 LTP: L+0T+2P Semester: 5th Course Outcome

| CO Number | CO Definition                                                                                                                                  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Recognize the foundational principles of Java programming and identify tools used in program design environments.                              |
| CO2       | Utilize the principles of overloading, inheritance, and access controls in the context of class structures.                                    |
| CO3       | Implement the concept of interfaces and demonstrate the process of importing packages in Java.                                                 |
| CO4       | Formulate application designs incorporating file handling, exception management, and multithreading.                                           |
| CO5       | Construct applications through the utilization of applets, and create intricate polygon designs, demonstrating creative and evaluative skills. |

#### Subject/Code No: Digital Image Processing/6CS3-01 LTP: 2L+0T+0P Semester: 6th Course Outcome

| CO Number | CO Definition                                                                                |
|-----------|----------------------------------------------------------------------------------------------|
| CO1       | Illustrate the fundamental concepts of Digital Image Processing System                       |
| CO2       | Demonstrate various transformations and filtering techniques on Images in different domains. |
| CO3       | Distinguish the causes for image degradation and compare the image restoration techniques.   |
| CO4       | Distinguish various image compression and segmentation techniques.                           |
| CO5       | Categorize different image segmentation and representation algorithms and techniques         |

#### Subject/Code No: Machine Learning/6CS4-02 LTP: 3L+0T+0P Semester: 6th Course Outcome

| CO Number | CO Definition                                                                                                    |
|-----------|------------------------------------------------------------------------------------------------------------------|
| CO1       | Apply supervised machine learning algorithms to real-time data to generate predictive insights.                  |
| CO2       | Analyze real-world data with unsupervised machine learning algorithms to identify patterns and make predictions. |
| CO3       | Evaluate different feature extraction and selection methods.                                                     |
| CO4       | Identify the different types of semi supervised learning and reinforcement learning algorithms.                  |
| CO5       | Develop and implement recommender systems and deep learning models to make predictions and recommendations.      |

#### Subject/Code No: Information Security System/6CS4-03 LTP: 2L+0T+0P Semester: 6th Course Outcome

| CO Number | CO Definition                                                                                                                                                      |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Identify services that enhance the security and its mechanism.                                                                                                     |
| CO2       | Classify security attacks on information over network. Describe and apply classical encryption techniques.                                                         |
| CO3       | Compare conventional encryption algorithms & public key cryptography, and design Encryption algorithm to provide the Integration and confidentiality of a message. |
| CO4       | Understand the concept of hash function with application and message authentication code in security system                                                        |
| CO5       | Classify key management schemes and discuss web security and transport level security protocols.                                                                   |

#### Subject/Code No: Computer Architecture and Organization/6CS4-04 LTP: 3L+0T+0P Semester: 6th Course Outcome

| CO Number | CO Definition                                                                       |
|-----------|-------------------------------------------------------------------------------------|
| CO1       | Implement register transfer with the help of micro-operations.                      |
| CO2       | Analyze basic of computer organization, instructions, RISC & CISC characteristics.  |
| CO3       | Apply integer and floating type computer arithmetic techniques.                     |
| CO4       | Analyze basics of memory organization, allocation and management schemes.           |
| CO5       | Assess modes of transfer and input output interface, interrupts and DMA processing. |

#### Subject/Code No: Artificial Intelligence/6CS4-05 LTP: 2L+0T+0P Semester: 6th Course Outcome

| CO Number | CO Definition                                                                                                                                                                               |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Recall and identify distinct approaches in AI, with a specific emphasis on significant techniques such as search algorithms, knowledge representation, planning, and constraint management. |
| CO2       | Elaborate on the current outlook of AI as the examination of agents that receive percepts from the environment and carry out actions in response.                                           |
| CO3       | Experimenting with the recognition of significant challenges encountered by AI and the intricacy involved in solving typical issues within the domain.                                      |
| CO4       | Systematically analyze and evaluate the presented techniques, then strategically employ them to address real-world challenges.                                                              |
| CO5       | Create and evaluate advanced AI approaches, exemplified by intelligent systems and expert systems.                                                                                          |

#### Subject/Code No: Cloud Computing/6CS4-06 LTP: 3L+0T+0PSemester: 6th Course Outcome

| CO Number | CO Definition                                                                                                                           |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Recognize the progression of cloud computing and its practical uses over time                                                           |
| CO2       | Evaluate the structure, framework, and various models of cloud computing's design and architecture.                                     |
| CO3       | Measure an appraisal of virtualization technology and data centers, including their applications within the context of cloud computing. |
| CO4       | Write the understanding of security concerning data, data centers, and cloud services.                                                  |
| CO5       | Explain cloud services such as AWS and Google App Engine in terms of their integration capabilities with cloud applications.            |

#### Subject/Code No: Distributed System/6CS5-11 LTP: 2L+0T+0P Semester: 6th Course Outcome

| CO Number | CO Definition                                                                                                                            |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Illustration of various architectures used to design distributed systems along with different types of operating systems.                |
| CO2       | Analysis of concurrent programming with inter process communication techniques, such as remote method invocation, remote events.         |
| CO3       | Evaluation of various distributed file system through case studies.                                                                      |
| CO4       | Analysis of distributed shared memory models and their failures in distributed computation.                                              |
| CO5       | Analyze various faults and their consequences and replicated data management through exploration different types of Distributed Systems. |

#### Subject/Code No: E Commerce & ERP/6CS5-13 LTP: 2L+0T+0P Semester: 6th Course Outcome

| CO Number | CO Definition                                                                                                                                              |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Describe the Ecommerce and ERP, delving into their respective requisites and the infrastructure needed to support them.                                    |
| CO2       | Examine the necessary infrastructure and software prerequisites to ensure the operational functionality of Ecommerce portals.                              |
| CO3       | Elaborate on the operational mechanisms of the Internet, web portals, and Ecommerce portals, while highlighting the essential infrastructure requirements. |
| CO4       | Apply the effectiveness of tools and techniques in the realm of digital marketing, considering their resultant impact.                                     |
| CO5       | Construct an XML-based database and formulate an XML application tailored for storing data.                                                                |

#### Subject/Code No: Digital Image Processing Lab/6CS4-21 LTP: 0L+0T+3PSemester: 6th Course Outcome

| CO Number | CO Definition                                                                      |
|-----------|------------------------------------------------------------------------------------|
| CO1       | Apply image enhancement operation and image Arithmetic Operations on a given image |
| CO2       | Demonstrate image restoration and histogram processing on images                   |
| CO3       | Distinguish and compare various Noise and filtering algorithms on images           |
| CO4       | Illustrate image restoration and segmentation techniques on an image               |
| CO5       | Apply pattern recognition techniques on images using features extraction           |

#### Subject/Code No: Machine Learning Lab/6CS4-22 LTP: 0L+0T+3P Semester: 6th Course Outcome

| CO Number | CO Definition                                                                                                            |
|-----------|--------------------------------------------------------------------------------------------------------------------------|
| CO1       | Understand the mathematical and statistical prospective of machine learning algorithms through python programming.       |
| CO2       | Evaluate the machine learning models pre-processed through various feature engineering algorithms by python programming. |
| CO3       | Design and evaluate the supervised models through python in built functions.                                             |
| CO4       | Design and evaluate the unsupervised models through python in built functions.                                           |
| CO5       | Understand the basic concepts of deep neural network model and design the same.                                          |

#### Subject/Code No: Python Lab/6CS4-23 LTP: 0L+0T+3P Semester: 6th Course Outcome

| CO Number | CO Definition                                                                                                                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | List various data types in python and use them to solve basic python programs.                                                      |
| CO2       | Describe Conditional statements and Looping structures concepts in python and apply these to create searching and sorting programs. |
| CO3       | Explain usage of List, Tuples, Set, Dictionary and Strings and use these to solve programming problems in different ways.           |
| CO4       | Discuss file handling concepts and apply them to create basic data handling programs.                                               |
| CO5       | Understand various built-in python functions and formulate user-defined functions.                                                  |

#### Subject/Code No: Mobile Application Development Lab/6CS4-24 LTP: 0L+0T+3P Semester: 6th Course Outcome

| CO Number | CO Definition                                                                                    |
|-----------|--------------------------------------------------------------------------------------------------|
| CO1       | Construct fundamental concepts of Android programming.                                           |
| CO2       | Construct diverse Android applications focusing on layouts and immersive interactive interfaces. |
| CO3       | Build Android applications centered around server less mobile databases such as SQLite.          |
| CO4       | Demonstrate an application that records data onto the SD card.                                   |
| CO5       | Design a compact Android Studio application.                                                     |

#### Subject/Code No: 7CS4-01/Internet of Things Semester: 7th Semester LTP: 3L+0T+0P Course Outcome

| CO Number | CO Definition                                                                                               |
|-----------|-------------------------------------------------------------------------------------------------------------|
| CO1       | Recognize the fundamental idea behind the Internet of Things (IoT).                                         |
| CO2       | Apply the connection of diverse sensors to Arduino/Raspberry Pi.                                            |
| CO3       | Execute wireless data transmission among distinct devices.                                                  |
| CO4       | Display proficiency in transferring sensor data to and from cloud-based servers.                            |
| CO5       | Evaluate the transformative impact of the Internet on Mobile Devices, Cloud Computing, and Sensor Networks. |

## Subject/Code No: 7AG6-60.2/Environmental Engineering and Disaster Management Semester: 7th Semester LTP: 3L+0T+0P Course Outcome

| CO Number | CO Definition                                                                                                                                                                                                                                                                                 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | State the natural environment and its relationships with human activities and realize the importance of ecosystem and biodiversity for maintaining ecological balance and know the objective and scope of the course.                                                                         |
| CO2       | Examine different types of pollutants, their distinguishing traits, and comprehend the significance of ensuring a secure water supply system and water quality.                                                                                                                               |
| CO3       | Evaluate strategies for managing solid waste, examining its attributes and the repercussions of solid waste on the environment. Assess both the quantity and attributes of solid waste, as well as its proper disposal methods. Recognize the significance of sanitation within this context. |
| CO4       | Assess the factors influencing the volume and attributes of wastewater, and analyze the processes involved in its treatment.                                                                                                                                                                  |
| CO5       | Generalize various types of Disasters and their social and environmental impact and the associated risk and vulnerability and plan the disaster management.                                                                                                                                   |

#### Subject/Code No: 7CS4-21/Internet of Things Lab Semester: 7th Semester LTP: 0L+0T+4P Course Outcome

| CO Number | CO Definition                                                                                                                                |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Recognize the constituent Components within IoT Architecture.                                                                                |
| CO2       | Construct connections between Devices and Sensors, applying theoretical understanding.                                                       |
| CO3       | Implement wireless data transmission techniques among various devices.                                                                       |
| CO4       | Evaluate and select appropriate IoT Devices and Sensors based on provided Case Studies.                                                      |
| CO5       | Execute the upload and download of sensor data on cloud and server, culminating in a comprehensive and proficient utilization demonstration. |

Subject/Code No: 7CS4-22/Cyber Security Lab Semester: 7th Semester LTP: 0L+0T+4P Course Outcome

| CO Number | CO Definition                                                                                                                                                  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Utilizing substitution and transposition techniques to achieve encryption and decryption of plain text, demonstrating comprehension and practical application. |
| CO2       | Design a solution for Key Exchange problem and understand the general attacks on system                                                                        |
| CO3       | Analyse the data transferred in client server communication and working of various network protocol                                                            |
| CO4       | Understand security-based tools like Wire shark, tcp dump, rootkits, snort etc.                                                                                |
| CO5       | Apply encryption, decryption techniques for secure data transmission, and digital signature generation, demonstrating understanding and application.           |

Subject/Code No: 8CS4-01/Big Data Analytics Semester: 8thSemester LTP: 3L+0T+0P Course Outcome

| CO Number | CO Definition                                                                                                        |
|-----------|----------------------------------------------------------------------------------------------------------------------|
| CO1       | Classify the building blocks of Big Data and review the growing field of Big Data Analytics.                         |
| СО        | Compose the algorithm of data intensive problem using map reduce example                                             |
| CO3       | Study and implement Writable Classes in Hadoop I/O                                                                   |
| CO4       | Design and Implementation of Big Data Analytics using pig to solve data intensive problems and to generate analytics |
| CO5       | Implement Big Data Activities using Hive.                                                                            |

#### Subject/Code No: 8TT6-60.2/Disaster Management Semester: 8th Semester LTP: 3L+0T+0P Course Outcome

| CO Number | CO Definition                                                                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Discuss the practicalities of hazards, disasters with associated natural/social phenomena Understand this with disaster management theory (cycle, phases) |
| CO2       | List the existing global frameworks and existing agreements (e.g. Sendai)                                                                                 |
| CO3       | Choose a methods of community involvement as an essential part of successful DRR. Humanitarian Assistance/Support before and after disaster               |
| CO4       | Technological innovations in Disaster Risk Reduction: Advantages and problems.                                                                            |
| CO5       | Experience on conducting independent DM study including data search, analysis and presentation of disaster case study.                                    |



#### Subject/Code No: 8CS4-21/Big Data Analytics Lab Semester: 8th Semester LTP: 0L+0T+2P Course Outcome

| CO Number | CO Definition                                                                                                    |
|-----------|------------------------------------------------------------------------------------------------------------------|
| CO1       | Summarize and implement the basic data structure algorithms like Linked list, stack, queue, set and map in Java. |
| CO2       | Illustrate the knowledge and implement different file management in Hadoop.                                      |
| CO3       | Discuss the example of map reduces and develop the data application using variety of system                      |
| CO4       | Evaluate and perform different operation on Data using Pig Latin                                                 |
| CO5       | Illustrate different operations on relations and databases using Hive.                                           |

#### Subject/Code No: 8CS4-22/Software Testing & Validation Lab Semester: 8th Semester LTP: 0L+0T+2P Course Outcome

| CO Number | CO Definition                                                                           |  |
|-----------|-----------------------------------------------------------------------------------------|--|
| CO1       | Understand the Automation Testing Approach using various tool                           |  |
| CO2       | Analyse & discuss the performance of different websites using JMeter                    |  |
| CO3       | Calculate the coverage analysis of programs using Eclemma tool.                         |  |
| CO4       | Describe & calculate the mutation score for various programs using jumble testing tool. |  |
| CO5       | Generate Test sequences and compare using Selenium tool for different websites.         |  |

### **Bachelor of Technology Artificial Intelligence & Data Science**

Program Name: Artificial Intelligence & Data Science Session 2021-22

Subject/Code No: Technical Communication/3AID1-02

LTP: 2+0+0 Semester: 3rd Course Outcome

| CO Number | CO Definition                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------|
| CO1       | Understand the process of technical communication in terms of LSRW.                                       |
| CO2       | Apply the concept of Technical Materials/Texts in various technical documents.                            |
| CO3       | Enhance the skills in the process of technical communication in terms of LSRW.                            |
| CO4       | Implement the basic concepts of technical communication in Technical Reports, articles and their formats. |

### Subject/Code No: Advanced Engineering Mathematics/3AID2-01 LTP: 3+0+0 Semester: 3rd

Course Outcome

| CO Number | CO Definition                                                                                           |
|-----------|---------------------------------------------------------------------------------------------------------|
| CO1       | Develop the concept of Probabilistic models and Random Variable.                                        |
| CO2       | Analysis through statistical methods like Normal distribution, Binomial Distribution etc.               |
| CO3       | Mathematical modeling for Industrial Problem using linear programing and solution by Graphical methods. |
| CO4       | Finding Solution of real time problems with Mathematical modelling.                                     |
| CO5       | Evaluate and create model for problems related to transportation and assignment.                        |

Subject/Code No: Digital Electronics/3AID3-04 LTP: 3+0+0 Semester: 3rd Course Outcome

| CO Number | CO Definition                                                                         |
|-----------|---------------------------------------------------------------------------------------|
| CO1       | Understand and apply number system in digital design.                                 |
| CO2       | Apply the laws of Boolean algebra to represent and simplify digital circuits.         |
| CO3       | Calculate the parameters of logic families and define their characteristics.          |
| CO4       | Develop competence in Combinational Logic Problem formulation and Logic Optimization. |
| CO5       | Classify the different types of flip-flops and design various sequential circuits     |



Subject/Code No: Data Structure & Algorithms/3AID4-05 LTP: 3+0+0 Semester: 3rd

**Course Outcome** 

| CO Number | CO Definition                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------|
| CO1       | Know the concept of stack operations and its implementation to solve real time problems.              |
| CO2       | Recognize the knowledge of Linked List and Queues to design algorithms for complex engineering tasks. |
| CO3       | Analyze and design efficient searching and sorting techniques.                                        |
| CO4       | Evaluate problems by storing data in tree structure and performing basic operations.                  |
| CO5       | Apply graph concept for complex problem and understand hasing.                                        |

Subject/Code No: Object Oriented Programming/3AID4-06 LTP: 3+0+0 Semester: 3rd

**Course Outcome** 

| CO Number | CO Definition                                                                                                                        |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Knowing the basic knowledge of object-oriented programming language constructs.                                                      |
| CO2       | Discussing and identifying the concept of reference, dynamic memory allocation and concept of various types of functions in classes. |
| CO3       | Apply inheritance and its types in real time problems.                                                                               |
| CO4       | Implement concept of polymorphism to perform different types of bindings.                                                            |
| CO5       | Create application using I/O and file handling with exception handling.                                                              |

Subject/Code No: Software Engineering/3AID4-07 LTP: 3+0+0 Semester: 3rd Course Outcome

| CO Number | CO Definition                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------|
| CO1       | Decompose the given project in various phases of a lifecycle.                                         |
| CO2       | Choose appropriate process model depending on the user requirements.                                  |
| CO3       | Perform various life cycle activities like Analysis, Design, Implementation, Testing and Maintenance. |
| CO4       | Know various processes used in all the phases of the product.                                         |
| CO5       | Analyse the knowledge, techniques, and skills in the development of a software product.               |



### Subject/Code No: Data Structures and Algorithms Lab/3AID4-21 LTP: 0+0+3 Semester: 3rd

**Course Outcome** 

| CO Number | CO Definition                                                                                 |
|-----------|-----------------------------------------------------------------------------------------------|
| CO1       | Understand and examine the concept of array & its storage.                                    |
| CO2       | Illustrate the implementation of basic data structure using an array.                         |
| CO3       | Analyse and compare different searching and sorting techniques.                               |
| CO4       | Develop programs to perform operations on Non-linear Data Structures such as Tree and Graphs. |
| CO5       | Design and use different sorting algorithms.                                                  |

Subject/Code No: Object Oriented Programming Lab/3AID4-22 LTP: 0+0+3 Semester: 3rd

Course Outcome

| CO Number | CO Definition                                                                                                              |
|-----------|----------------------------------------------------------------------------------------------------------------------------|
| CO1       | Understand the concept of C++ programming language while evaluating different access specifiers to define member function. |
| CO2       | Implement memory allocation techniques and various inbuilt functions.                                                      |
| CO3       | Know inheritance and analyse the types of inheritance.                                                                     |
| CO4       | Apply the concept of polymorphism to perform different types of bindings.                                                  |
| CO5       | Develop and use of application related to I/O and file handling with exception handling.                                   |

Subject/Code No: Software Engineering Lab/3AID4-23 LTP: 0+0+3 Semester: 3rd Course Outcome

| CO Number | CO Definition                                                                                     |
|-----------|---------------------------------------------------------------------------------------------------|
| CO1       | Understand the software engineering methodologies involved in the phases for project development. |
| CO2       | Know about open-source tools used for implementing software engineering methods.                  |
| CO3       | Develop product-startups implementing software process models in software engineering methods.    |
| CO4       | Understand Open-source Tools: StarUML / UMLGraph / Topcased.                                      |
| CO5       | Discuss and analyse how to develop software requirements specifications for a given problem.      |



Subject/Code No: Digital Electronics Lab/3AID4-24 LTP: 0+0+3 Semester: 3rd Course Outcome

| CO Number | CO Definition                                                                                                                                      |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | List different types of logic gates, identify their ICs and also verify their truth tables.                                                        |
| CO2       | Demonstrate the functioning of basic logic gates, adder, and subtractor using universal gates.                                                     |
| CO3       | Design a combinational circuit using MSI devices and verify its functionalities.                                                                   |
| CO4       | Develop various sequential circuit using Flip Flops and verify its functionalities.                                                                |
| CO5       | Formulate Various types of counters, Shift registers SISO, SIPO, PISO, PIPO using Flip-Flops and verify its functionalities using simulation tool. |

Subject/Code No: Industrial Training/3AID7-30 LTP: 0+0+3 Semester: 3rd Course Outcome

| CO Number | CO Definition                                                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Compose an interest in research-oriented fields and develop the ability to research for literature and prepare brief report.  |
| CO2       | Identify the skills, competencies and points of view needed by professionals in the field most closely related to the course. |
| CO3       | Discuss and identify about topics of current intellectual importance.                                                         |
| CO4       | Develop the communication skills and awareness about the industrial environment.                                              |
| CO5       | Revise Skill development for presentation.                                                                                    |

Subject/Code No: Discrete Mathematical Structures/4AID2-01

LTP: 3+0+0 Semester: IV

| CO Number | CO Definition                                                                                            |
|-----------|----------------------------------------------------------------------------------------------------------|
| CO1       | Explain the various fundamental concepts of the Set theory and Logics.                                   |
| CO2       | Illustrate the concept of relations and Diagraph to analyse the area of greatest impact for improvement. |
| CO3       | Create the application part of lattices in distributed computing and Data mining.                        |
| CO4       | Implementation of Graphs and their application in real time problem.                                     |
| CO5       | Analyse the concept of Algebraic Structures.                                                             |



## Subject/Code No: Managerial Economics and Financial Accounting/4AID1-03 LTP: 2+0+0 Semester: IV

**Course Outcome** 

| CO Number | CO Definition                                                                                                                                                                               |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Recognize and describe the fundamental concepts of Economics and Financial Management and define the meaning of national income, demand, supply, cost, market structure, and balance sheet. |
| CO2       | Calculate and classify the domestic product, national product and elasticity of price on demand and supply.                                                                                 |
| CO3       | Draw the cost graphs, revenue graphs and forecast the impact of change in price in various perfect as well as imperfect market structures.                                                  |
| CO4       | Compare the financial statements to interpret the financial position of the firm and evaluate the project investment decisions.                                                             |

Subject/Code No: Microprocessors & Interfaces/4AID3-04 LTP: 3+0+0 Semester: IV Course Outcome

| CO Number | CO Definition                                                                |
|-----------|------------------------------------------------------------------------------|
| CO1       | Discuss working of functional components of computer system.                 |
| CO2       | Demonstrate an overall functional structure of the Microprocessor.           |
| CO3       | Explain how interrupts are used to implement I/O control and data transfers. |
| CO4       | To learn the design aspects of I/O and Memory Interfacing circuits.          |
| CO5       | Implement their practical approach through laboratory experiments.           |

Subject/Code No: Database Management System/4AID4-05 LTP: 3+0+0 Semester: IV Course Outcome

| CO Number | CO Definition                                                                          |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------------|--|--|--|--|--|
| CO1       | Develop database using E-R diagram to represent simple database application scenarios. |  |  |  |  |  |
| CO2       | dentify data from database using query language.                                       |  |  |  |  |  |
| CO3       | Apply normalization process to refine database schema.                                 |  |  |  |  |  |
| CO4       | Describe transaction processing and Serializability.                                   |  |  |  |  |  |
| CO5       | Interpret the concept of Concurrency Control and concept of Failure and Recovery.      |  |  |  |  |  |



Subject/Code No: Theory of Computation/4AID4-06 LTP: 3+0+0 Semester: IV

| CO Number | CO Definition                                                                                                                                                                                                                                         |  |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| CO1       | Analyse the concept of Finite Automata and distinguish between Non- Deterministic Finite Automata and Deterministic Finite Automata.  Analyse regular sets and its properties. Composition of Regular Expression from Finite Automata and vice-versa. |  |  |  |  |  |
| CO2       | Understand the Context Free Grammar and its simplification.                                                                                                                                                                                           |  |  |  |  |  |
| CO3       | Asses the Context Free Language and generation of Push Down Automata for Context Free Grammar.                                                                                                                                                        |  |  |  |  |  |
| CO4       | Know the Turing Machine and its various types. Discuss the Hierarichy of formal languages.                                                                                                                                                            |  |  |  |  |  |
| CO5       | Evaluating the P, NP, NP complete,NP hard problems with the help of examples.                                                                                                                                                                         |  |  |  |  |  |

Subject/Code No: Data Communication and Computer Networks/4AID4-07

LTP: 3+0+0 Semester: IV

**Course Outcome** 

| CO Number | CO Definition                                                                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Describe the concept of signals and illustrate the functionality of OSI & TCP/IP reference model.                               |
| CO2       | Explain channel allocation, framing, flow control, and error control mechanisms and apply them using data link layer protocols. |
| CO3       | Determine the function of network layer, design subnets and calculate IP addresses for a network.                               |
| CO4       | Illustrate and Analyse different transport layer protocols and functions.                                                       |
| CO5       | Analyze the different protocols at Application layer.                                                                           |

Subject/Code No: Microprocessor and Interface Lab/4AID4-21

LTP: 0+0+3 Semester: IV

| CO Number | CO Definition                                                                                                                                          |  |  |  |  |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| CO1       | Knowing and apply the fundamentals of assembly level programming of microprocessors and microcontroller.                                               |  |  |  |  |  |  |
| CO2       | mplement standard microprocessor real time interfaces including GPIO, serial ports, digital-to-<br>analog converters and analog-to-digital converters. |  |  |  |  |  |  |
| CO3       | Interpret Troubleshoot interactions between software and hardware.                                                                                     |  |  |  |  |  |  |
| CO4       | Analyze abstract problems and apply a combination of hardware and software to address the problem.                                                     |  |  |  |  |  |  |
| CO5       | Use standard test and measurement equipment to evaluate digital interfaces.                                                                            |  |  |  |  |  |  |



## Subject/Code No: Data Base Management System Lab/4AID4-22 LTP: 0+0+3 Semester: IV

**Course Outcome** 

| CO Number | CO Definition                                                                  |  |  |  |  |  |
|-----------|--------------------------------------------------------------------------------|--|--|--|--|--|
| CO1       | Know how to make database schema for given scenarios.                          |  |  |  |  |  |
| CO2       | Apply Keys and Constraints on database using RDBMS.                            |  |  |  |  |  |
| CO3       | Formulate aggregate functions.                                                 |  |  |  |  |  |
| CO4       | Compose PL/SQL including stored procedures, stored functions, cursors concept. |  |  |  |  |  |
| CO5       | Develop Triggers, SQL and Procedural interfaces.                               |  |  |  |  |  |

Subject/Code No: Network Programming Lab/4AID4-23 LTP: 0+0+3 Semester: IV

**Course Outcome** 

| CO Number | CO Definition                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------|
| CO1       | Describe the functioning of various networking equipment's and Standard Network Topologies.           |
| CO2       | Explain and Define the LAN Installation and Configurations techniques.                                |
| CO3       | Design code for various Error correcting techniques and framing methods through C Language.           |
| CO4       | Analyze and verify client and server involving UDP/TCP sockets using Socket Programming.              |
| CO5       | Demonstrate and determine the Communication Models between client and server using Network Simulator. |

### Subject/Code No: Linux Shell Programming Lab/4AID4-24/4CDS4-24 LTP: 0+0+3 Semester: IV

| CO Number | CO Definition                                                                                      |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| CO1       | Know and apply Key Concepts and Commands for Shell Programming.                                    |  |  |  |  |  |
| CO2       | Analyze the different security measures that can be implemented to protect the director structure. |  |  |  |  |  |
| CO3       | Define Approaches to Mastering Shell Quoting Mechanisms.                                           |  |  |  |  |  |
| CO4       | Evaluate Patterns with simple Regular Expressions using Filters using various Command.             |  |  |  |  |  |
| CO5       | Explain how to use scripting to enhance command output.                                            |  |  |  |  |  |



Subject/Code No: Java Lab/4AID4-25 LTP: 0+0+3 Semester: IV

| CO Number | CO Definition                                                                                          |  |  |  |  |
|-----------|--------------------------------------------------------------------------------------------------------|--|--|--|--|
| CO1       | Use the syntax and semantics of java programming language and basic concepts of OOP.                   |  |  |  |  |
| CO2       | Develop reusable programs using the concepts of inheritance, polymorphism, interfaces and packages.    |  |  |  |  |
| CO3       | Apply the concepts of Multithreading and Exception handling to develop efficient and error free codes. |  |  |  |  |
| CO4       | Design event driven GUI and web related applications which mimic the real word scenarios.              |  |  |  |  |
| CO5       | Design the applications using applets and use of graphics in java.                                     |  |  |  |  |

### **Bachelor of Technology Civil Engineering**

Program Name: Civil Engineering Session: 2021-22

| S.<br>No. | Course<br>Code | Course Name                  | CO<br>No. | Course Outcomes                                                                                                                                                                                                                      |
|-----------|----------------|------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                | Advance                      | CO 1      | Conduct investigations on interpolation and numerical integration based real world problems.                                                                                                                                         |
|           |                |                              | CO 2      | Analyse the various numerical methods and evaluate solution of problems based on differential equations, polynomial equations and Transcendental equations.                                                                          |
| 1         | 3CE2-01        | Engineering<br>Mathematics-I | CO 3      | Evaluate Laplace transform and inverse Laplace transforms to solve Initial Value Problem (IVP).                                                                                                                                      |
|           |                |                              | CO 4      | Apply Fourier transforms and inverse Fourier transforms to solve Initial Value Problem (IVP) and Boundary Value Problem (BVP).                                                                                                       |
|           |                |                              | CO 5      | Apply Z-transform in discrete system and evaluate solution of problems based on recurrence relations.                                                                                                                                |
| 2         | 3CE1-02        | 2 Technical<br>Communication | CO 1      | Apply basics of grammar, common error in writing and speaking, study of advanced grammar, editing strategies to achieve appropriate technical style of official documents such as Project Reports, Manuals, and Minutes of Meetings. |
|           |                |                              | CO 2      | Investigate, judge and assess their linguistic ability which will get enhanced by Identifying key principles and delivery techniques of effective public speaking (listening, speaking, writing, reading)                            |
|           |                |                              | CO 3      | Outline Notes and create different kinds of technical documents, plan information collection along with analyzing factors and strategies for Information design and document design in an organization.                              |
|           |                |                              | CO 4      | Create emails and memos intended for an audience within the same company or team as well as to design Resume, Job Application, and Technical Reports.                                                                                |
|           |                |                              | CO 5      | Apply and Analyse the relation between load, shear force, bending moment and slope deflection.                                                                                                                                       |
|           | 3CE3-04        | Engineering<br>Mechanics     | CO 1      | Analyse and evaluate Fundamental laws of mechanics.                                                                                                                                                                                  |
| 3         |                |                              | CO 2      | Evaluate structure by methods of joints and method of section.                                                                                                                                                                       |
|           |                |                              | CO 3      | Differentiate the concept of Moment of Inertia of any section.                                                                                                                                                                       |

|   |         |                                           | I _  | Applicant the indicating of status to seed 1999 (1)                                                                                           |
|---|---------|-------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|   |         |                                           | CO 4 | Analyse the principal of virtual works, different types of friction, Spring and their arrangement                                             |
|   |         |                                           | CO 5 | Relate stresses and strain for a structure.                                                                                                   |
|   |         |                                           | CO 1 | Analyse the importance of surveying and apply the methods for measuring angles and directions using various instruments.                      |
| ٠ |         |                                           | CO 2 | Evaluate RL using levelling instruments of a given area.                                                                                      |
| 4 | 3CE4-05 | Surveying                                 | CO 3 | Analyse the different type of curve in field.                                                                                                 |
|   |         |                                           | CO 4 | Apply the concept of tachometry and photogrammetric in field.                                                                                 |
|   |         |                                           | CO 5 | Create the setting out of work using different instruments (Total station and EDM).                                                           |
|   |         |                                           | CO 1 | Understand various types of fluid and its properties.                                                                                         |
|   | 3CE4-06 | Fluid Mechanics                           | CO 2 | Apply & Analyse various pressures at a point in a static fluid, equilibrium condition and stability concept for floating bodies.              |
| 5 |         |                                           | CO 3 | Explain types, behaviour and various phenomenon to estimate the fluid discharge.                                                              |
|   |         |                                           | CO 4 | Apply the concept of Euler, Bernoulli's and momentum equation.                                                                                |
|   |         |                                           | CO 5 | Evaluate the concept of laminar flow through pipes, its characteristics and losses.                                                           |
|   |         | Building<br>Materials and<br>Construction | CO 1 | Understand various types of fluid and its properties.                                                                                         |
|   | 3CE4-07 |                                           | CO 2 | Apply & Analyse various pressures at a point in a static fluid, equilibrium condition and stability concept for floating bodies.              |
| 6 |         |                                           | CO 3 | Explain types, behaviour and various phenomenon to estimate the fluid discharge.                                                              |
|   |         |                                           | CO 4 | Apply the concept of Euler, Bernoulli's and momentum equation.                                                                                |
|   |         |                                           | CO 5 | Evaluate the concept of laminar flow through pipes, its characteristics and losses.                                                           |
|   | 3CE4-08 | Engineering<br>Geology                    | CO 1 | Understand and evaluate the geology: Branches and Scope of Geology and the concepts of various geological materials and weathering processes. |
| 7 |         |                                           | CO 2 | Analyse and evaluate the properties, behaviour and engineering significance of different type of rocks and minerals.                          |
|   |         |                                           | CO 3 | Interpret and Analyse different type of geological features: Fold, Fault, Joints and Unconformities.                                          |

|    |         |                                                   | CO 4 | Relate and evaluate Geophysical methods for Subsurface Analysis and understand the site selection parameters for Dam& Tunnel.                                                      |
|----|---------|---------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |         |                                                   | CO 5 | Create and evaluate the basic concept of remote sensing & GIS in various fields of Civil Engineering.                                                                              |
|    |         |                                                   | CO1  | Use different conventional instruments of measurements in surveying in length, angle, levelling measurements.                                                                      |
|    | 3CE4-21 | Currenting Lab                                    | CO2  | Apply the procedures involved in field work and to work as a surveying team.                                                                                                       |
| 8  | 30E4-21 | Surveying Lab                                     | CO3  | Determine the Height of an object by trigonometric levelling                                                                                                                       |
|    |         |                                                   | CO4  | Discuss and determine the modern tool of measurement in surveying like EDM, Total station etc.                                                                                     |
|    |         |                                                   | CO5  | Conduct a survey, collect field data and plot them on a paper                                                                                                                      |
|    |         | Fluid Mechanics<br>Lab                            | CO1  | Able to demonstrate the basic properties and characteristics of incompressible fluid in laboratory.                                                                                |
| 9  | 3CE4-22 |                                                   | CO2  | Able to demonstrate fundamental theorems governing fluid flows i.e., continuity, energy and momentum in laboratory.                                                                |
|    | 002122  |                                                   | CO3  | Able to measure different fluid properties using various type of equipment's like measurement of flow, pressure velocity and head loss.                                            |
|    |         |                                                   | CO4  | Classify the various pressure measuring devices.                                                                                                                                   |
|    |         |                                                   | CO1  | Draw Orthographic projections of Lines, Planes, and Solids                                                                                                                         |
|    | 3CE4-23 | Computer Aided<br>Civil<br>Engineering<br>Drawing | CO2  | Construct Isometric Scale, Isometric Projections and Views                                                                                                                         |
| 10 |         |                                                   | CO3  | Draw Sections of various Solids including Cylinders, cones, prisms and pyramids                                                                                                    |
|    |         |                                                   | CO4  | Draw projections of lines, planes, solids, isometric projections and sections of solids including Cylinders, cones, prisms and pyramids using AutoCAD                              |
|    |         | Civil Engineering<br>Materials Lab                | CO1  | To study about selection criteria and uses of common building stones and dressing of stones.                                                                                       |
| 11 | 3CE4-24 |                                                   | CO2  | To understand the types and properties of bricks and their determination as per IS code such as water absorption, compressive strength, effloresces, dimension and tolerance test. |
|    |         |                                                   | CO3  | To know raw material of cements.                                                                                                                                                   |
|    |         |                                                   | CO4  | To study the various properties of material i.e glass, kotastone etc.                                                                                                              |
| 12 | 3CE4-25 | Geology Lab                                       | CO1  | Students should be able to learn the significance of earth and its minerals.                                                                                                       |

|    |         |                                                      |      | Obstants should be able to 1 10 110 110 110                                                                                                                                                                                                                                  |
|----|---------|------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |         |                                                      | CO2  | Students should be able to learn the significance of rocks and its engineering properties.                                                                                                                                                                                   |
|    |         |                                                      | CO3  | Students should be able to understand the application of geology knowledge to civil engineering construction.                                                                                                                                                                |
|    |         |                                                      | CO4  | To know about various applications of remote sensing techniques.                                                                                                                                                                                                             |
|    |         |                                                      | CO 1 | Apply concept of probability and evaluate solutions of real-world problems.                                                                                                                                                                                                  |
|    |         |                                                      | CO 2 | Analyse standard probability distributions and evaluate solutions of real-world problems.                                                                                                                                                                                    |
| 13 | 4CE2-01 | Advance<br>Engineering<br>Mathematics-II             | CO 3 | Estimate the relationship between variables of databases of<br>the problems in quantify and qualitative forms and solve<br>problems by methods of correlation, regression and Rank<br>correlation.                                                                           |
|    |         |                                                      | CO 4 | Explore the relationship between variables of databases of the problems and evaluate standard form of the problem by the method of least squares (Method of curve fitting).                                                                                                  |
|    |         |                                                      | CO 5 | Conduct investigation on hypothesis testing in statistical problems and evaluate solution of problem in appropriate form.                                                                                                                                                    |
|    | 4CE1-03 | Managerial<br>Economics &<br>Financial               | CO 1 | Determine the objectives, nature, scope, role & responsibilities of a manager of a business undertaking.                                                                                                                                                                     |
|    |         |                                                      | CO 2 | Predict the demand for a product or product mix of a company & to Analyse various factors influencing demand elasticity. Forecast & compute the future sales level of a product by using various quantitative & qualitative techniques and with the help of past sales data. |
| 14 |         |                                                      | CO 3 | Differentiate the meaning, importance, sources, & uses of capital in an enterprise and to estimate the working capital requirements.                                                                                                                                         |
|    |         |                                                      | CO 4 | Know the meaning, importance, steps, methods, uses & limitations of Capital Budgeting & Market Structure.                                                                                                                                                                    |
|    |         |                                                      | CO 5 | Interpret, Analyse, discuss & comment on the financial performance of a business unit through liquidity leverage, coverage, turn over & profitability ratios.                                                                                                                |
| 45 |         | Basic Electronics for Civil Engineering Applications | CO 1 | Understand the concepts of Digital Electronics.                                                                                                                                                                                                                              |
|    | 4CE3-04 |                                                      | CO 2 | Interpret the Basic Electronics in measurements in Civil Engineering applications.                                                                                                                                                                                           |
| 15 |         |                                                      | CO 3 | Analyse and equip with Errors in measurements systems and to expose to Data Acquisition and Processing.                                                                                                                                                                      |
|    |         |                                                      | CO 4 | Apply skills of Sensors and to explain Various Sensor Characteristics.                                                                                                                                                                                                       |

|    |         |                           | CO 5                                                                                                                                                                                                                                         | To share them Image processing Tools and Mat lab codes                                                                                                                                                                |
|----|---------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |         |                           | <u> </u>                                                                                                                                                                                                                                     | on Images.                                                                                                                                                                                                            |
|    |         |                           | CO 1                                                                                                                                                                                                                                         | Understand and apply the concept of stress and strains and to evaluate stress and strains in different members.                                                                                                       |
| 16 | 4CE4-05 | Strength of               | CO 2                                                                                                                                                                                                                                         | Apply and Analyse the Bending moment, Shear force and Axial thrust diagrams for statically determinate beams and the distribution of bending and shear stresses for simple and composite sections.                    |
| 10 | 4CE4-00 | Materials                 | CO 3                                                                                                                                                                                                                                         | Interpret and compare the elementary concepts of torsion, shear stress in solid and hollow circular shafts.                                                                                                           |
|    |         |                           | CO 4                                                                                                                                                                                                                                         | Evaluate the short and long columns subjected to various loading conditions.                                                                                                                                          |
|    |         |                           | CO 5                                                                                                                                                                                                                                         | Apply and Analyse the relation between load, shear force, bending moment and slope deflection.                                                                                                                        |
|    |         |                           | CO 1                                                                                                                                                                                                                                         | Understand dimensional analysis and Analyse the various models, concepts and characteristics of boundary layer and turbulent flow.                                                                                    |
|    |         | Hydraulics<br>Engineering | CO 2                                                                                                                                                                                                                                         | Classify steady, unsteady, uniform and non-uniform flow, to apply and evaluate gradually and rapidly varied flow in open channel flow                                                                                 |
| 17 | 4CE4-06 |                           | CO 3                                                                                                                                                                                                                                         | Identify about the working of hydraulic machines like pumps, turbines: To apply and relate the performance of hydraulic machines                                                                                      |
|    |         |                           | CO 4                                                                                                                                                                                                                                         | Describe about hydrological phenomenon, unit hydrograph, Analyse the rainfall, and properties of aquifer: to Analyse and estimate the runoff and peak runoff rate.                                                    |
|    |         | CO 5                      | Apply and estimate water requirement, delta, duty and base and various aspects of Design of Canal: To understand various approaches of cross section of channels and silt control in canals and Analyse Kennedy's theory and Lacey's theory. |                                                                                                                                                                                                                       |
|    |         | Building<br>Planning      | CO 1                                                                                                                                                                                                                                         | Understand and Analyse the different types of buildings, criteria for location and site selection and the different methods of drawing sun chart and sun shading devices.                                             |
| 18 | 4CE4-07 |                           | CO 2                                                                                                                                                                                                                                         | Apply and Analyse the Climatic and comfort Consideration using climate modulating devices and evaluate the orientation criteria for tropical climate with the consideration of Building Bye Laws and NBC Regulations. |
|    |         |                           | CO 3                                                                                                                                                                                                                                         | Evaluate the principles of Planning and different factors affecting planning including Vastu Shastra in Modern Building planning.                                                                                     |

|    |                                       |                        | CO 4                                                                                          | Interpret and compare the functional design and Accommodation requirements of different Buildings.                                                    |
|----|---------------------------------------|------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                       |                        | CO 5                                                                                          | Relate the Services in Buildings.                                                                                                                     |
|    |                                       |                        | CO 1                                                                                          | Apply the knowledge of properties and role of various ingredients like cement, aggregate, admixtures etc. to produce good quality concrete.           |
|    |                                       |                        | CO 2                                                                                          | Analyse properties of fresh and harden concrete by examining in lab and perform destructive, semi-destructive and non-destructive tests for concrete. |
| 19 | 4CE4-08                               | Concrete<br>Technology | CO 3                                                                                          | Categorize the concrete manufacturing process and selecting right step by step process to achieve workable, durable of fresh and harden concrete.     |
|    |                                       |                        | CO 4                                                                                          | Design the concrete mix with suitable chemical admixture; this fulfils the required properties for fresh and hardened concrete.                       |
|    |                                       | CO 5                   | Create the advance concrete and develop such concrete by adding and manipulating composition. |                                                                                                                                                       |
|    |                                       |                        | CO1                                                                                           | Explain basic properties of materials.                                                                                                                |
|    | 20 4CE4-21 Material Testing Lab       | •                      | CO2                                                                                           | Identify the test to be conducted for different properties of building materials.                                                                     |
| 20 |                                       |                        | CO3                                                                                           | Test for different properties of building materials.                                                                                                  |
|    |                                       | CO4                    | Analyse the test results for different properties.                                            |                                                                                                                                                       |
|    |                                       |                        | CO1                                                                                           | Describe the equipment's used for behaviour and measurement of fluid in hydraulic structure                                                           |
| 21 | 21 4CE4-22 Hydraulics Engineering Lab | ,                      | CO2                                                                                           | Apply characteristics of Pelton Wheel, hydraulic jump and Centrifugal Pump in civil engineering                                                       |
|    |                                       | CO3                    | Analyse the discharge by using various instruments like venturimeter Broad crested weir.      |                                                                                                                                                       |
|    |                                       |                        | CO4                                                                                           | Evaluate momentum equation, Manning' & Chezy's coefficient of roughness for the bed of a given flume.                                                 |
|    |                                       |                        | CO1                                                                                           | Create drawing of basic components of buildings.                                                                                                      |
| 22 | 4CE4-23                               | Building Drawing       | CO2                                                                                           | Identify the components of different buildings required as per their functional need.                                                                 |
|    |                                       |                        | CO3                                                                                           | Create drawing of building masonry.                                                                                                                   |
|    |                                       |                        | CO4                                                                                           | Draw the plan, section and elevation of a building                                                                                                    |
| 23 | 4CE4-24                               |                        | CO1                                                                                           | Identify the instruments required for a particular survey problem                                                                                     |

|    |                      |                              | CO2                                                                             | Device a method to fulfill the desired objective.                                                                                    |
|----|----------------------|------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|    |                      | Advanced<br>Surveying<br>Lab | CO3                                                                             | Conduct the survey experiment using appropriate instruments and procedure.                                                           |
|    |                      | Lab                          | CO4                                                                             | Analyse the data obtained and get the results after necessary computations.                                                          |
|    |                      |                              | CO1                                                                             | Explain the Quality control test on ingredients of concrete.                                                                         |
| 24 | 4CE4-25              | Concrete Lab                 | CO2                                                                             | Conduct Quality Control test on ingredients of fresh and hardened concrete.                                                          |
|    |                      |                              | CO3                                                                             | Analyse the test on fresh and hardened concrete and Non-destructive test on concrete.                                                |
|    |                      |                              | CO4                                                                             | Design the concrete mix.                                                                                                             |
|    |                      |                              | CO 1                                                                            | Implement the basic concept of engineering economics and evaluate cost optimization.                                                 |
|    |                      |                              | CO 2                                                                            | Apply the safety provision in the construction industry.                                                                             |
| 25 | 5CE3-01              | Construction Technology and  | CO 3                                                                            | Analyse the safety in construction and evaluate safety requirements.                                                                 |
|    | equipment            | equipment                    | CO 4                                                                            | Analyse the Construction Planning and Materials Management.                                                                          |
|    |                      | CO 5                         | Distinguish the different types of Construction Equipment and their Management. |                                                                                                                                      |
|    | 26 5CE4-02 Structure | CO 1                         | Calculate the degree of indeterminacy of any structures.                        |                                                                                                                                      |
|    |                      |                              | CO 2                                                                            | Analyse the indeterminate structures by different kinds of methods.                                                                  |
| 26 |                      | Structure<br>Analysis- I     | CO 3                                                                            | Analyse the indeterminate structures by different kinds of methods.                                                                  |
|    |                      | , , , ,                      | CO 4                                                                            | Students will get the knowledge of elementary concepts of structural vibration.                                                      |
|    |                      |                              | CO 5                                                                            | Analyse the vibrating structure.                                                                                                     |
|    |                      |                              | CO 1                                                                            | Analyse the Singly reinforced beam and Design the Singly reinforced beam by Working Stress Method.                                   |
|    |                      | Design of                    | CO 2                                                                            | Differentiate the Singly reinforced beam & doubly reinforced beam and Design the Doubly reinforced beam by using Limit State Method. |
| 27 | 5CE4-03              | Concrete<br>Structures       | CO 3                                                                            | Analyse the beam for flexure, shear, torsion, bond and anchorage and development length.                                             |
|    |                      |                              | CO 4                                                                            | Categorized and design the one way and two-way concrete slab according IS 456 -2000.                                                 |
|    |                      |                              | CO 5                                                                            | Design the axially loaded, eccentrically loaded short columns, Isolated & Combined foundation.                                       |

| e of the fication of es of soil.  trength of I stresses solidation |
|--------------------------------------------------------------------|
| l stresses                                                         |
| solidation                                                         |
|                                                                    |
| ssures on                                                          |
| and Site                                                           |
| ique and                                                           |
| cation in                                                          |
|                                                                    |
| ive areas.                                                         |
| estimate                                                           |
| er.                                                                |
|                                                                    |
| sters.                                                             |
| ent cycle                                                          |
| ndia and<br>nt.                                                    |
| different                                                          |
| ant impact                                                         |
| os                                                                 |
|                                                                    |
|                                                                    |
| l methods                                                          |
| that are                                                           |
|                                                                    |

|    |                   |                                    | CO 3 | Apply and differentiate various NDT (Non-Destructive Test) techniques.                                                                                                                                |
|----|-------------------|------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                   |                                    | CO 4 | Differentiate among various Repairing techniques and materials                                                                                                                                        |
|    |                   |                                    | CO 5 | Conduct the investigation on the case studies of bridges, piers and different concrete structures.                                                                                                    |
|    |                   |                                    | CO 1 | Understand the fundamental concepts of ground improvement techniques in civil engineering construction activities                                                                                     |
|    |                   |                                    | CO 2 | Describe the different techniques of ground improvements                                                                                                                                              |
| 31 | 5CE5-15           | Ground<br>Improvement<br>Technique | CO 3 | Apply knowledge of mathematics, Science and Geotechnical Engineering to solve problems in the field of modification of ground required for construction of Civil Engineering structures.              |
|    |                   |                                    | CO 4 | Illustrate reinforced wall design using steel strip or georeinforcement                                                                                                                               |
|    |                   |                                    | CO 5 | Use effectively the various methods of ground improvement techniques and outline the solution for problematic soils                                                                                   |
|    |                   | Concrete<br>Structures<br>Design   | CO1  | Assess the bending moment and shear force for beams, columns, slabs and footings.                                                                                                                     |
|    |                   |                                    | CO2  | Analyse the design parameters of the flexural members to fulfill the requirements of WSM and Limit state of Collapse for Flexure, shear and torsion.                                                  |
| 32 | <b>32</b> 5CE4-21 |                                    | CO3  | Design of flexural members for flexure, shear, bond, development length &Electrical Engineering curtailment of bar to fulfill the criteria of Limit State of Collapse for Flexure, shear and Torsion. |
|    |                   |                                    | CO4  | Analyse and design of column and column footings economically and suitably recommend the appropriate type according to site conditions                                                                |
|    |                   | Geotechnical<br>Engineering Lab    | CO1  | Implement and Analyse the properties of soil such as Grain size distribution, specific Gravity, liquid limit, plastic limit and density etc.                                                          |
|    |                   |                                    | CO2  | Classify C-Ø values by unconfined compression Test Apparatus, Direct Shear Test Apparatus and Triaxial Test.                                                                                          |
| 33 | 5CE4-22           |                                    | CO3  | Evaluate the differential free swell index, swelling pressure, CBR of soil.                                                                                                                           |
|    |                   |                                    | CO4  | Interpret the compressibility parameters of soil by consolidation test, permeability of soil by constant and falling head methods.                                                                    |

|    | T        | Т                                           | 1    | ,                                                                                                                                                        |
|----|----------|---------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |          |                                             | CO1  | LO1) Explain the basic concept of water resource engineering, canals, dams, well irrigation, cross drainage structure and hydrology.                     |
| 34 | 5CE4-23  | Water Resource<br>Engineering<br>Design Lab | CO2  | LO2) Apply the water resource concept in irrigation system, canals, diversion head works, dams, well irrigation, cross-drainage structure and hydrology. |
|    |          | Design Lab                                  | CO3  | LO3) Analyse the water requirement of crop, seepage losses in dam, forces acting on dam, run off and rain fall.                                          |
|    |          |                                             | CO4  | LO4) Design of canal, surface and subsurface flows, dams like embankment and gravity dam, tube well.                                                     |
|    |          |                                             | CO 1 | Understand the basic concept of building configuration & differentiate the types of building, shear walls, framed structure and Tube Structure.          |
|    |          |                                             | CO 2 | Analyse the different types of design load as per Indian Standard Codes 875 Part-I, II & load Flow Concept in a Structure.                               |
| 35 | 6CE03-01 | Wind & Seismic<br>Analysis                  | CO 3 | Differentiate the Flat, Pitched and Mono slope roof and Analyse the roofs with respect to wind load as per Indian standard code IS 875-III.              |
|    |          |                                             | CO 4 | Analyse the frame structures for earthquake load as per Indian standard code IS1893-I.                                                                   |
|    |          |                                             | CO 5 | Differentiate the provision for earthquake resistance building as per Indian standard code IS 4326, IS13827, IS13828, IS13920 and IS13935.               |
|    |          |                                             | CO 1 | Understand among various types of structures and Examine & Produce the Structure by Strain Energy method and Unit Load Method.                           |
| 36 | 6CE4-02  | 2 Structural<br>Analysis-II                 | CO 2 | Apply the basic principles of SFD & BMD for the rolling loads and mathematical problems with reference to rolling loads and ILD.                         |
| 30 | 0024-02  |                                             | CO 3 | Evaluate between types of arches and evaluate the stability of arches.                                                                                   |
|    |          |                                             | CO 4 | Analyse the concept of unsymmetrical bending and shear centre.                                                                                           |
|    |          |                                             | CO 5 | Analyse and Evaluate the Frame by using three different methods and build & differentiate among these methods.                                           |
| 37 | 6CE4-03  | Environmental                               | CO 1 | Analyse the various water quality standard, Distinguish the water distribution system and design the various reservoir                                   |
|    |          | Engineering                                 | CO 2 | Analyse the various water treatment methods, design and apply the various parameters used in the sewer system.                                           |
|    |          |                                             |      |                                                                                                                                                          |

|    | 1            | T                                | 1    |                                                                                                                                                                          |
|----|--------------|----------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |              |                                  | CO 3 | Design the sewerage systems, Analyse the various Sewage characteristics Quality parameters and Distinguish the Standards of disposal in land                             |
|    |              |                                  | CO 4 | Analyse the various treatment method of sewage, Evaluate the various Pollution due to improper disposal of sewage, Distinguish the Wastewater Disposal and Refuse method |
|    |              |                                  | CO 5 | Analyse the Quantification of air pollutants, evaluate various control methods measures for Air pollution and noise pollution                                            |
|    |              |                                  | CO 1 | Analyse steel sections used in steel structures and the suitable sections for design.                                                                                    |
|    | 2054.04      | Design of Steel                  | CO 2 | Analyzing the different kinds of connection used in steel structures and being able to create the compression and tension member.                                        |
| 38 | 38   6CE4-04 | Structures                       | CO 3 | Create the laterally supported and unsupported steel beams and Analyse the gantry girder, plate girder and laterally loaded steel members.                               |
|    |              |                                  | CO 4 | Analyse and apply the different type's column bases.                                                                                                                     |
|    |              |                                  | CO 5 | Analyse and create the truss girder and foot over bridge.                                                                                                                |
|    |              | Estimating and Costing           | CO 1 | To provide the student with the ability to estimate the quantities of item of works involved in buildings and bill of quantities                                         |
| 39 | 6CE4-05      |                                  | CO 2 | To provide the student with the ability to estimate the quantities of item of works involved in different projects                                                       |
| 33 | 0024-03      |                                  | CO 3 | To provide the student with the ability to do rate analysis                                                                                                              |
|    |              |                                  | CO 4 | Preparation of estimates for different works like roads, buildings, earth work, water supply etc.                                                                        |
|    |              |                                  | CO 5 | To provide the student with the ability to valuation of properties                                                                                                       |
|    |              |                                  | CO 1 | Analyse and characterization of solid waste, hazardous waste constituents.                                                                                               |
|    |              | Solid and                        | CO 2 | Understand health and environmental issues related to solid waste management.                                                                                            |
| 40 | 6CE5-12      | Hazardous<br>Waste<br>Management | CO 3 | Apply steps in solid waste management-waste reduction at source, collection techniques, materials and resource recovery/recycling, transport of solid waste              |
|    |              |                                  | CO 4 | Analyse treatment and disposal techniques, economics of the onsite vs. offsite waste management                                                                          |
|    |              |                                  | CO 5 | Evaluate the effectiveness of a waste-to-energy facility in terms of energy production, emissions, and waste reduction.                                                  |

|    |         | Traffic                     | CO 1                                                                                          | Understand characteristics of road, road users and vehicle performance with traffic law                                                                |
|----|---------|-----------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |         |                             | CO 2                                                                                          | Analyse various traffic surveys and their interpretation with applications & significance.                                                             |
| 41 | 6CE5-13 | Engineering &<br>Management | CO 3                                                                                          | Evaluate various intersections, traffic signs and markings.                                                                                            |
|    |         | Management                  | CO 4                                                                                          | Analyse road accidents its causes, effects, prevention, traffic.                                                                                       |
|    |         |                             | CO 5                                                                                          | Analyse Traffic Management System by Direct and indirect methods.                                                                                      |
|    |         |                             | CO 1                                                                                          | Explain different types of bridges, components and loadings as per Indian standards provisions                                                         |
|    |         |                             | CO 2                                                                                          | Apply the fundamental concept of bridge loadings on Steel and RCC bridges                                                                              |
| 42 | 6CE5-14 | Bridge<br>Engineering       | CO 3                                                                                          | Analyse the RCC and steel bridges using Courbons and Hendry-Jaegar method                                                                              |
|    |         |                             | CO 4                                                                                          | Design of Bearings, Steel and RCC bridges according to IRC codal provisions                                                                            |
|    |         | CO 5                        | Evaluate the impact of environmental factors on the durability of different bridge materials. |                                                                                                                                                        |
|    |         |                             | CO 1                                                                                          | Define the use of rock mass classification systems (RMR & Q).                                                                                          |
|    |         |                             | CO 2                                                                                          | Explain methods for in situ investigation and laboratory testing of rock matrix and discontinuities.                                                   |
| 43 | 6CE5-15 | Rock<br>Engineering         | CO 3                                                                                          | Apply the knowledge ofthe characteristics and the mechanical properties (strength and failure criteria) of rock mass, rock matrix and discontinuities. |
|    |         |                             | CO 4                                                                                          | Analyse the stress distribution (isotropic, anisotropic) in situ and around an opening in rock (competent rock, jointed rock mass, blocky rock)        |
|    |         |                             | CO 5                                                                                          | Analyse the potential environmental impact of rock excavation and suggest appropriate mitigation measures.                                             |
|    |         | 010 0 Damete                | CO 1                                                                                          | Evaluate Photogrammetric and apply principles of Photogrammetric to create maps and their substitutes                                                  |
|    |         |                             | CO 2                                                                                          | Analyse the basic concept of remote sensing.                                                                                                           |
| 44 | 6CE5-16 | GIS & Remote<br>Sensing     | CO 3                                                                                          | Evaluate and Analyse different types of platforms, sensors and their characteristics in Remote Sensing.                                                |
|    |         |                             | CO 4                                                                                          | Analyse and create the different types of information from different remote sensing data products using various image processing techniques.           |

|    | T        | T                                                       | Т                                                                                                                    | 1                                                                                                                |
|----|----------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|    |          |                                                         | CO 5                                                                                                                 | Create the basic concept of GIS and Analyse the use of GIS tools for civil engineering purpose.                  |
|    |          |                                                         | CO1                                                                                                                  | Understand the water quality parameters their permissible limits and compute population forecasting water demand |
| 45 | 6CE4-21  | Environmental<br>Engineering                            | CO2                                                                                                                  | Analyse the physical and chemical tests to be conducted for the water before supply.                             |
|    |          | Design And Lab                                          | CO3                                                                                                                  | Design of filters, tanks, densification units and transmission system                                            |
|    |          |                                                         | CO4                                                                                                                  | Design of sewer lines, storm water systems, aerobic & anaerobic treatment units                                  |
|    |          |                                                         | CO1                                                                                                                  | Calculate the plastic moment of different cross section and design of bolted and welded connections              |
| 46 | 6CE4-22  | Steel Structures Design Lab                             | CO2                                                                                                                  | Analyse and design the tension, compression & column bases member under axial and combined loading               |
|    |          | Design Lab                                              | CO3                                                                                                                  | Discuss the pre-engineered buildings, bridges & trusses                                                          |
|    |          | CO4                                                     | Identify and demonstrate the various section of steel structures at field visit                                      |                                                                                                                  |
|    |          | Quantity<br>Surveying And<br>Costing                    | CO1                                                                                                                  | Able to prepare preliminary and detailed estimates by various methods.                                           |
| 47 | 6CE4-23  |                                                         | CO2                                                                                                                  | Able to do rate analysis of various items of work                                                                |
|    |          |                                                         | CO3                                                                                                                  | Able to evaluate earth work for road, canals ad channels.                                                        |
|    |          |                                                         | CO4                                                                                                                  | Able to do Valuation of Buildings and Properties.                                                                |
|    |          | Water and Earth<br>Retaining<br>Structure design<br>lab | CO1                                                                                                                  | Understand concept of coefficient method (IS code) and apply it for analysis and design of continuous beams.     |
| 48 | 6CE4-24  |                                                         | CO2                                                                                                                  | Analysis and design of circular domes with u.d.l. & concentrated load at crown                                   |
|    |          |                                                         | CO3                                                                                                                  | Classification of water tanks according to shape and design of rectangular, circular and intze type tanks.       |
|    |          | CO4                                                     | Analysis and design of Cantilever Retaining Walls and introduction to counterfort and buttress type retaining walls. |                                                                                                                  |
|    |          |                                                         | CO1                                                                                                                  | Apply the theoretical knowledge of bearing capacity to design various types of shallow foundation.               |
| 49 | 6CE4- 25 | Design Of                                               | CO2                                                                                                                  | Understand the design of pile foundation (covering both geotechnical and structural aspects).                    |
| -  |          | Foundations                                             | CO3                                                                                                                  | Discuss the different components of well foundation, its construction and design methods.                        |
|    |          |                                                         | CO4                                                                                                                  | Use the theoretical knowledge of earth pressure to Analyse and design of various retaining structures.           |
|    |          |                                                         |                                                                                                                      |                                                                                                                  |

|    |               |                            |                                                                                           | B                                                                                                                                                         |
|----|---------------|----------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |               |                            | CO 1                                                                                      | Discuss the planning, characteristics and development of the transportation system and classify the various road cross section elements and curves.       |
|    |               | Transportation             | CO 2                                                                                      | Analyze the various properties, procedures of highway construction material and equipment's.                                                              |
| 50 | 7CE4-01       | Engineering                | CO 3                                                                                      | Design and construction of flexible and rigid pavements as per IRC.                                                                                       |
|    |               |                            | CO 4                                                                                      | Analyze the types and Selection of Gauges, Selection of Alignment and Railway component.                                                                  |
|    |               |                            | CO 5                                                                                      | Design and planning of airport pavement by using various methods and modern trends in water transportation.                                               |
|    |               |                            | CO 1                                                                                      | Describe the principles of various digital modulation systems and their properties, including bandwidth, channel capacity, transmission over bandlimited. |
| 51 | 7EC6-<br>60.1 | Principle of Electronic    | CO 2                                                                                      | Apply the concepts to practical applications in telecommunication.                                                                                        |
|    | 00.1          | communication              | CO 3                                                                                      | Analyse communication systems in both the time and frequency domains.                                                                                     |
|    |               | CO 4                       | Design a communication system comprised of both analog and digital modulation techniques. |                                                                                                                                                           |
|    |               |                            | CO 1                                                                                      | Explain the smart grids components and architecture.                                                                                                      |
| 52 | 7EC6-<br>60.2 | Micro System<br>Smart      | CO 2                                                                                      | Apply different measuring methods and sensors used in smart grid.                                                                                         |
|    | 00.2          | Technology                 | CO 3                                                                                      | Analyze various renewable energy technologies.                                                                                                            |
|    |               | CO 4                       | Designing of various smart grid technology-based devices.                                 |                                                                                                                                                           |
|    |               |                            | CO 1                                                                                      | To Apply direct stiffness, Rayleigh-Ritz, Galerkin and other mathematical methods to solve engineering problems.                                          |
| 53 | 7ME6-         | Finite Element<br>Analysis | CO 2                                                                                      | To Analyze 1D and 2D problems of statics, fluid mechanics and heat transfer.                                                                              |
| 33 | 60.1          |                            | CO 3                                                                                      | To evaluate the Eigenvalues and Eigenvectors for stepped bar and beam, explain nonlinear geometric and material non linearity.                            |
|    |               |                            | CO 4                                                                                      | To Create solutions for Higher order problems of the engineering field.                                                                                   |
|    |               | 0=19                       | CO 1                                                                                      | Describe the basic concept of Quality Management.                                                                                                         |
| 54 |               | Quality<br>Management      | CO 2                                                                                      | Explain a system, component, and process to meet desired needs within limits using modeling process quality and learn the concept of control charts.      |

|      | 7ME6-<br>60.2 |                                     | CO 3 | Illustrate the concept of Quality Assurance, Acceptance sampling and study quality systems like ISO9000, ISO 14000 and Six Sigma.                                               |
|------|---------------|-------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |               |                                     | CO 4 | Identify engineering problems, concept of reliability and Taguchi Method of Design of experiments.                                                                              |
|      |               |                                     | CO 1 | Understand the constructional details and principle of operation of rotating electrical machines.                                                                               |
| 55   | 7EE6-<br>60.1 | Electrical<br>Machines and          | CO 2 | Acquire knowledge about the working principle and various aspects of electric drives.                                                                                           |
|      | 00.1          | Drives                              | CO 3 | Study and analyze the various control techniques for speed control on various electric drives.                                                                                  |
|      |               |                                     | CO 4 | Develop design knowledge on how to design the speed control and current control loops of an electric drive.                                                                     |
|      |               |                                     | CO 1 | Classify and describe various renewable energy sources.                                                                                                                         |
|      |               |                                     | CO 2 | Predict possible renewable energy sources.                                                                                                                                      |
| 56   | 7EE6-         | Power<br>Generation<br>Sources      | CO 3 | Illustrate the renewable energy sources.                                                                                                                                        |
|      | 60.2          |                                     | CO 4 | Re-organize energy sources.                                                                                                                                                     |
|      |               |                                     | CO 5 | Prioritize all other renewable energy sources as needed by societal application.                                                                                                |
|      |               | Quality<br>Management /<br>ISO 9000 | CO 1 | Understand the importance of quality management and the ways individuals can affect quality.                                                                                    |
| 57   | 7CS6-         |                                     | CO 2 | Analyse the components of a quality management system and the role of the quality management system.                                                                            |
|      | 60.1          |                                     | CO 3 | Apply quality management to improve computer-based systems.                                                                                                                     |
|      |               |                                     | CO 4 | Design Various components of quality system to avoid failures and rectification.                                                                                                |
|      |               | 7CS6- Cyber Security 60.2           | CO 1 | Develop The Understanding of Cybercrime and legal Perspectives of Security Implications for Organizations in respect to the Mobile and Wireless Devices.                        |
| 58   |               |                                     | CO 2 | Analyze different cyber offences & attacks and Determine How a Criminals plan the cyber-Attacks.                                                                                |
| J0   | 7CS6-<br>60.2 |                                     | CO 3 | Understanding the cyber security solutions and use of cyber security Tools in Cybercrime.                                                                                       |
| 00.2 |               |                                     | CO 4 | Evaluate and communicate the Management Perspective human role in security systems with an Organizational, emphasis on ethics, social engineering vulnerabilities and training. |

|           |                  |                                               | CO1                                                                                                                                     | Understand the importance and determination of physical properties of aggregates.                                                       |
|-----------|------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| <b>E0</b> |                  | Road Material                                 | CO2                                                                                                                                     | Evaluate and analyse the suitability of materials from data collected by physical tests done on aggregates and bitumen.                 |
| 59        | 7CE4-21          | Testing Lab                                   | CO3                                                                                                                                     | Design of different bituminous layers of flexible pavement and compare their results with IRC/MoRTH recommendations.                    |
|           |                  |                                               | CO4                                                                                                                                     | Prepare a formal report describing complex design procedures and results.                                                               |
|           |                  | CO1                                           | Understand the basic concepts of Different types of Knots, Different types of plan layout in field and type of scaffolding and ladders. |                                                                                                                                         |
| 60        | 7CE-22           | Professional Practices & Field Engineering    | CO2                                                                                                                                     | Identify the preparation Specification and bar bending schedule for reinforcement works.                                                |
|           |                  | Liigiiieeiiiig                                | CO3                                                                                                                                     | Analysis of Estimation and Valuation methods of buildings and properties.                                                               |
|           |                  |                                               | CO4                                                                                                                                     | Understand the use and type of scaffolding and ladders                                                                                  |
|           |                  | Soft Skills Lab                               | CO 1                                                                                                                                    | Develop a strategy for fostering a positive team environment through effective communication.                                           |
|           | 7054.00          |                                               | CO 2                                                                                                                                    | Identify different types of nonverbal communication cues.                                                                               |
| 61        | 7CE4-23          |                                               | CO 3                                                                                                                                    | Compare and contrast different communication styles and their appropriateness in various situations.                                    |
|           |                  |                                               | CO 4                                                                                                                                    | Apply conflict resolution techniques to resolve a simulated interpersonal conflict.                                                     |
|           |                  |                                               | CO 1                                                                                                                                    | Define water and waste water treatment plant process and design.                                                                        |
| 62        | 7CE4-24          | Environmental<br>Monitoring and<br>Design Lab | CO 2                                                                                                                                    | Discuss various methods to measure air, noise, water and waste water pollution.                                                         |
|           |                  |                                               | CO 3                                                                                                                                    | Apply various equipment, technology to demonstrate air, noise pollution, water and waste water treatment process.                       |
|           |                  |                                               | CO 4                                                                                                                                    | Examine and analyze the quantification of air and noise pollutants, water and waste water pollution.                                    |
| 63        | 7CE7-30          | Practical                                     | CO 1                                                                                                                                    | Understand organizational issues including teams, attitudes and define work-life balance and its impact on organizations and employees. |
|           | 7GE7-30 Training | CO 2                                          | Understand of current technologies in field of civil engineering and Analyze problems and suggest possible solutions.                   |                                                                                                                                         |

|    |               |                                                                   | CO 3 | Develop effective group communication, presentation, self-                                                                                                                                              |
|----|---------------|-------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |               |                                                                   |      | management and report writing skills.                                                                                                                                                                   |
|    |               |                                                                   | CO 4 | Summarize and illustrate the work done during the internship, both in writing and through oral presentation.                                                                                            |
|    |               |                                                                   | CO 1 | Build a technical document by organizing a detailed literature survey.                                                                                                                                  |
| 64 | 7CE7-40       | Seminar                                                           | CO 2 | Compare different concepts available in literature about a specific topic.                                                                                                                              |
|    |               | <b>3</b> 0 <b>3</b>                                               | CO 3 | Conclude with literature gap about the topic and recommendations for future scope.                                                                                                                      |
|    |               |                                                                   | CO 4 | Develop effective presentation, self-confidence and writing skills.                                                                                                                                     |
|    |               |                                                                   | CO 1 | Evaluate the financial evaluation of projects.                                                                                                                                                          |
|    |               | Project Planning                                                  | CO 2 | Analyze the project scheduling of PERT, CPM and other.                                                                                                                                                  |
| 65 | 8CE4-01       | and                                                               | CO 3 | Understand the cost and time control.                                                                                                                                                                   |
| 00 | 0004-01       | Construction<br>Management                                        | CO 4 | Understand contract management and dispute settlement.                                                                                                                                                  |
|    |               | a.a.gee.                                                          | CO 5 | Understand the safety measure and use of software in safety & monitoring of project.                                                                                                                    |
|    |               | Big Data<br>Analytics (Open<br>Elective-II)                       | CO 1 | Understanding of Big Data and their needs in Industry.                                                                                                                                                  |
| 00 | 8CS6-<br>60.1 |                                                                   | CO 2 | Designing of Hadoop and Google File System.                                                                                                                                                             |
| 66 |               |                                                                   | CO 3 | Analysis of Map Reduce and their basic programs map reduce.                                                                                                                                             |
|    |               |                                                                   | CO 4 | Design a Hive Data system.                                                                                                                                                                              |
|    |               | IPR, Copyright<br>and Cyber Law<br>of India (Open<br>Elective-II) | CO1  | To Determine and analyse the domain name system (DNS) in internet and various cybercrime offence in cyber space.                                                                                        |
| 67 | 8CS6-<br>60.2 |                                                                   | CO2  | To understand the concept of Intellectual Property and Intellectual Property Rights with special reference to India and abroad.                                                                         |
| 67 |               |                                                                   | CO3  | To Apply intellectual property law principles including the copyright law, patents law, designs and trademarks, to real problems and analyse the social impact of intellectual property law and policy. |
|    |               |                                                                   | CO4  | To Study the Jurisdiction Issues in Cyber Space and Competition Law in India.                                                                                                                           |
|    | 0550          |                                                                   | CO1  | Understand the current Energy Scenarios in India.                                                                                                                                                       |
| 68 | 8EE6-<br>60.1 | Energy Audit<br>and Demand                                        | CO2  | Illustrate the energy auditing of motors, lighting system and building, by appropriate analysis methods through survey instrumentations.                                                                |

|     |               | side<br>Management                | СОЗ                                                                                                                                   | Understand the Electrical-Load Management and Demand side Management.                                                                                                                         |
|-----|---------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |               |                                   | CO4                                                                                                                                   | Apply the Energy Conservation in transport, agriculture, household and commercial sectors.                                                                                                    |
|     |               |                                   | CO1                                                                                                                                   | Learn about soft computing techniques and their applications.                                                                                                                                 |
|     | 8EE6-         |                                   | CO2                                                                                                                                   | Analyze various neural network architectures.                                                                                                                                                 |
| 69  | 60.2          | Soft Computing                    | CO3                                                                                                                                   | Define the fuzzy systems.                                                                                                                                                                     |
|     |               |                                   | CO4                                                                                                                                   | Understand the genetic algorithm concepts and their applications.                                                                                                                             |
|     |               |                                   | CO5                                                                                                                                   | Identify and select a suitable Soft Computing technology to solve the problem.                                                                                                                |
|     |               |                                   | CO1                                                                                                                                   | Student will able to define the simulation modeling and analyze the practical situations in organizations.                                                                                    |
| 70  | 8ME6-         | Simulation Modeling and           | CO2                                                                                                                                   | Examine the random numbers and random variates approach in different applications.                                                                                                            |
| 10  | 60.2          | Modeling and<br>Analysis          | CO3                                                                                                                                   | Investigate the sensitivity of simulation solutions for realistic problems.                                                                                                                   |
|     |               | CO4                               | Evaluate the solution based on realistic situation including existing standards and propose the suitable solution with justification. |                                                                                                                                                                                               |
|     | 8ME6-         | BME6- Operations<br>60.1 Research | CO1                                                                                                                                   | Describe the characteristics of different types of optimization techniques with the appropriate tools to be used in type                                                                      |
| 71  |               |                                   | CO2                                                                                                                                   | Examine the concept of optimization techniques to build and solve different types of industrial problems, by using appropriate techniques.                                                    |
| / ' | 60.1          |                                   | CO3                                                                                                                                   | Investigate the sensitivity of a solution for different variables and propose recommendations in language understandable to the decision-makers in realistic problem.                         |
|     |               |                                   | CO4                                                                                                                                   | Evaluate the solution based on realistic situation including existing standards and propose the suitable solution with justification.                                                         |
|     | 8EC6-<br>60.1 |                                   | CO 1                                                                                                                                  | Understanding of basic concepts and Principles of EM wave, propagation reflection and transmission. [Understanding]                                                                           |
| 72  |               |                                   | CO 2                                                                                                                                  | Apply the knowledge for interest in complex dielectric constant, dipolar loss mechanism and design mechanism to understand the effect of rate rise of temperature. [Applying & Understanding] |
|     |               |                                   | CO 3                                                                                                                                  | Analyze the structure of RF heating in industrial application. [Analyzing]                                                                                                                    |

|    | I         |                                                      |      | <u> </u>                                                                                                                                      |
|----|-----------|------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|    |           |                                                      | CO 4 | Design of Hazards and safety standards in various engineering problem. [Create & Design].                                                     |
| 73 | 8EC6-60.2 | Robotics and                                         | CO 1 | Understand the fundamentals of robotics and its components, methods of linear motion into rotary motion and vice-verse. [Understanding]       |
|    |           |                                                      | CO 2 | Apply the appropriate techniques for movement of robotic joints with computers/microcontrollers. [Applying & Understanding]                   |
|    |           | Control                                              | CO 3 | Analyze parameters required to be controlled in a robot for specific application. [Analyzing]                                                 |
|    |           |                                                      | CO 4 | Design and develop small automatic / autotronics applications with the help of Robotics for solving the real-life problems [Create & Design]. |
|    |           | Project Planning &<br>Construction<br>Management Lab | CO 1 | Understand the capital budgeting, Contracts, Tenders and related terms, Arbitration, PERT and CPM, PPP model.                                 |
| 74 | 8CE4-21   |                                                      | CO 2 | Analysis the capital budgeting, Estimation of various items, Network analysis, Project based on PPP model.                                    |
|    |           |                                                      | CO 3 | Prepare the bar chart diagram, Project Progress Network muster roll, measurement book, tender documents, Tender Notice.                       |
|    |           |                                                      | CO 4 | Develop the understanding about dispute settlement.                                                                                           |
|    |           |                                                      | CO 1 | Design of bituminous mixes, DLC and PQC as per relevant IS Code provisions.                                                                   |
| 75 | 8CE4-22   | Pavement Design                                      | CO 2 | Understand basics parameters and concepts of pavement design.                                                                                 |
|    |           |                                                      | CO 3 | Design of flexible pavement by various methods.                                                                                               |
|    |           |                                                      | CO 4 | Understand the specifications of low-cost roads/rural roads.                                                                                  |
|    | 8CE7-50   | Project                                              | CO 1 | Discover potential research areas and conduct a survey of several available literatures in the preferred field of study.                      |
| 76 |           |                                                      | CO 2 | Compare and contrast the several existing solutions for research challenge.                                                                   |
|    |           |                                                      | CO 3 | Demonstrate an ability to work in teams and manage the conduct of the research study.                                                         |
|    |           |                                                      | CO 4 | Formulate and propose a plan for creating a solution for the research plan identified.                                                        |
|    |           |                                                      | CO 5 | Report and present the findings of the study conducted in the preferred domain.                                                               |



#### **Bachelor of Technology Electronics and Communication Engineering**

Program Name: B.Tech. in Electronics and Communication Engineering

Subject/Code No: Computer Architecture, 5EC3-01 LTP: 2+0+0 Semester: V Course Outcomes

| CO Number | CO Definition                                                                                                                                                                                                                                           |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Understand the principles of computer organization along with fundamental concepts pertaining to processor architecture, memory arrangement, and input-output mechanisms.                                                                               |
| CO2       | Examine the fundamental framework of a digital computer, including methods for adding and multiplying integers and floating-point figures using two's complement and IEEE floating-point notation. Delve into the organization of input-output systems. |
| CO3       | Critically assess arithmetic operations on both fixed and floating-point numbers within a computer, employing diverse algorithms such as the restoring method, microprogrammed control units, and DMA controllers.                                      |
| CO4       | Formulate designs for elementary and intermediate RISC pipelines, encompassing considerations like the instruction set, functional units, and integral components of computers.                                                                         |

Subject/Code No: Electromagnetics Waves, 5EC4-02 LTP: 3+0+0 Semester: V Course Outcomes

| CO Number | CO Definition                                                                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Introduce the idea of the number system, Boolean Algebra, combinational and sequential circuits, semiconductor memories, and the flow of VLSI design. |
| CO2       | Utilize suitable technology to enhance circuit performance, leading to smoother and faster operations, thereby conserving time and energy.            |
| CO3       | Examine the creation process and compromises within different digital electronic categories, aiming to achieve lower power usage and smaller sizes.   |
| CO4       | Evaluate both synchronous and asynchronous sequential circuits, and cultivate the skill to design such circuits using VHDL.                           |



#### Subject/Code No: Control System, 5EC4-03 LTP: 3+0+0 Semester: V Course Outcomes

| CO Number | CO Definition                                                                                                                                                                                                                                                                  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Explain the fundamental notion of control systems encompassing both feedback and open-loop configurations. Explore time and frequency-based evaluations of system responses. Delve into state-variable examination, optimal control strategies, and nonlinear control systems. |
| CO2       | Resolve intricacies related to feedback control systems, time-based responses, frequency-based reactions, and state-variable analyses. Employ tools like Routh-stability criterion, root locus, polar plot, bode plot, Nyquist plots, and state models to ascertain stability. |
| CO3       | Assess the performance of diverse control systems by assessing their behavior in time-domain, frequency-domain, and through state-space analysis techniques.                                                                                                                   |
| CO4       | Formulate suitable compensatory mechanisms for typical control scenarios using both time and frequency response approaches.                                                                                                                                                    |

Subject/Code No: Digital Signal Processing, 5EC4-04 LTP: 3+0+0 Semester: V

**Course Outcomes** 

| CO Number | CO Definition                                                                                                                                                                                    |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Elucidate the notion of sampling and its subsequent reconstruction. [Recall]                                                                                                                     |
| CO2       | Elaborate on the Z-Transform, DFT, and FFT algorithms. [Comprehension]                                                                                                                           |
| CO3       | Utilize the Z-Transform, DFT, and FFT algorithms to scrutinize Linear Shift-Invariant (LSI) systems. [Application and Analysis]                                                                  |
| CO4       | Formulate Infinite Impulse Response (IIR) and Finite Impulse Response (FIR) filters employing distinct techniques tailored for diverse Digital Signal Processing (D.S.P.) applications. [Design] |

Subject/Code No: Microwave Theory & Techniques, 5EC4-05 LTP: 3+0+0 Semester: V Course Outcomes

| CO Number | CO Definition                                                                                                                                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Introduction to the fundamental ideas and tenets of microwave engineering.                                                                                                                                                  |
| CO2       | Acquire insights into the functioning of electromagnetic waves and the construction of both active and passive microwave networks. Additionally, identify the distinct microwave parameters employed within these networks. |
| CO3       | Examine the effectiveness of an impedance tuning network aimed at optimizing the transmission for satellite and RADAR communication.                                                                                        |
| CO4       | Incorporate active and passive microwave components to construct a representative communication system, enabling an assessment of its impact on the human body.                                                             |



# Subject/Code No: Satellite Communication, 5EC5-14 LTP: 2+0+0 Semester: V Course Outcomes

| CO Number | CO Definition                                                                                                                                                        |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Introduction to the structure of satellite systems as a mechanism for achieving rapid, extended-range communication.                                                 |
| CO2       | Elaborate on diverse facets linked to satellite systems, including orbital equations, satellite subsystems, link budgeting, modulation, and multiple access methods. |
| CO3       | Examine the array of access strategies employed in satellite communication.                                                                                          |
| CO4       | Solve numerical scenarios concerning orbital motion and the formulation of a link budget based on specified parameters and conditions.                               |

# Subject/Code No: RF Simulation Lab, 5EC4-21 LTP: 0+0+3 Semester: V Course Outcomes

| CO Number | CO Definition                                                                                                                             |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Elaborate upon fundamental microwave network theory and the application of scattering matrices.                                           |
| CO2       | Utilizing microwave energy for targeted heating of specific regions or objects enhances the performance of electronic devices.            |
| CO3       | Exhibit a comprehensive understanding of essential radio frequency (RF) concepts, RF amplification, and RF filtering.                     |
| CO4       | Devise RF amplifier configurations employing microwave bipolar junction transistors (BJTs) and microwave field-effect transistors (FETs). |
| CO5       | Create and manufacture microwave components or devices utilizing micro strip technology.                                                  |

# Subject/Code No: Digital Signal Processing Lab, 5EC4-22 LTP: 0+0+3 Semester: V Course Outcomes

| CO Number | CO Definition                                                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Categorize signals and employ diverse signal manipulations.                                                                       |
| CO2       | Investigate assorted attributes of digital systems.                                                                               |
| CO3       | Construct Simulink models and graphical user interfaces (GUIs) for both analog and digital modulation methods.                    |
| CO4       | Formulate a variety of Digital Signal Processing (DSP) algorithms using the MATLAB software package for distinct transformations. |
| CO5       | Formulate, examine, and execute Analog & Digital filters through MATLAB programming.                                              |



#### Subject/Code No: Microwave Lab, 5EC4-23 LTP: 0+0+3 Semester: V Course Outcomes

| CO Number | CO Definition                                                                                                                  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Elaborate upon the fundamental idea behind microwave component mechanisms utilized in wired communication systems.             |
| CO2       | Construct linear and non-linear data structures through the utilization of linked lists.                                       |
| CO3       | Investigate the characteristics of distinct microwave parameters, considering their intrinsic traits.                          |
| CO4       | Formulate an assessment of and design real-time application-oriented microwave waveguides intended for communication purposes. |

Subject/Code No: Industrial Training, 5EC7-30 LTP: 0+0+1 Semester: V
Course Outcomes

| CO Number | CO Definition                                                                                                 |
|-----------|---------------------------------------------------------------------------------------------------------------|
| CO1       | Engage in industrial projects as part of the industrial training experience.                                  |
| CO2       | Collaborate with professionals in the industry and adhere to established engineering protocols and standards. |
| CO3       | Cultivate understanding of typical workplace conduct and enhance interpersonal and teamwork proficiencies.    |
| CO4       | Generate proficient work reports and deliver well-structured presentations.                                   |

Subject/Code No: Power Electronics, 6EC3-01 LTP: 2+0+0 Semester: VI Course Outcomes

| CO Number | CO Definition                                                                                                                                                                                       |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Elaborate on the fundamental functioning and contrast the efficiency of different Power Semiconductor Devices, passive components, and switching circuits.                                          |
| CO2       | Elucidate the operation of step-up and step-down choppers, power supplies, and Buck-Boost converters through an understanding of the fundamental operational traits of power semiconductor devices. |
| CO3       | Formulate typical alternative approaches and choose appropriate power converters for the regulation of electric motors and other industrial-grade equipment.                                        |
| CO4       | Design and assess Controlled Converters for both single-phase and three-phase systems, as well as Voltage and Current Source Inverters.                                                             |



# Subject/Code No: Computer Network, 6EC4-02 LTP: 3+0+0 Semester: VI Course Outcomes

| CO Number | CO Definition                                                                                                                                                                                                                                    |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Capable of acquiring and dissecting the principles behind layered protocol architecture; skillful in recognizing and detailing the system functions within the accurate protocol strata, while also explaining the interplay between these layer |
| CO2       | Resolve mathematical quandaries to grasp data-link and network protocols more comprehensively.                                                                                                                                                   |
| CO3       | Utilize network layer protocols and compute the requisite count of subnets for a given network.                                                                                                                                                  |
| CO4       | Analyze the dependability of data transmission over the transport layer in the context of bit errors within a lossy channel scenario.                                                                                                            |

### Subject/Code No: Fiber Optics Communications, 6EC4-03 LTP: 3+0+0 Semester: VI Course Outcomes

| CO Number | CO Definition                                                                                                                                                                                                                                                                      |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Understanding the fundamental ideas and fundamental principles of Fiber Optics Communication.                                                                                                                                                                                      |
| CO2       | Acquiring insight into the functioning of fiber optic communication and applying this understanding to construct an optical measurement setup. This arrangement will enable the measurement of various crucial factors, including numerical aperture, dispersion, and attenuation. |
| CO3       | Evaluating the composition of diverse categories of optical transmitters and receivers for the purpose of setting up optical connections.                                                                                                                                          |
| CO4       | Devising systems for WDM and DWDM, and additionally assessing the efficacy of active and passive optical components.                                                                                                                                                               |

### Subject/Code No: Antennas and Propagation, 6EC4-04 LTP: 3+0+0 Semester: VI Course Outcomes

| CO Number | CO Definition                                                                                                                               |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Elaborate on the fundamental notion of antennas and their practical uses.                                                                   |
| CO2       | Determine an antenna's radiation pattern to deduce both its physical configuration and the wavelength of the emitted electromagnetic waves. |
| CO3       | Assess the radiation patterns exhibited by different types of antennas.                                                                     |
| CO4       | Devise a Smart Antenna system tailored for real-time applications.                                                                          |



# Subject/Code No: Information Theory and Coding, 6EC4-05 LTP: 3+0+0 Semester: VI Course Outcomes

| CO Number | CO Definition                                                                                                                                            |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Elaborate on the basics of information theory, including concepts like uncertainty, information, entropy, channel capacity, and the necessity of coding. |
| CO2       | Employ coding methods for both sources and channels, such as Huffman, Lempel-Ziv, and Block codes.                                                       |
| CO3       | Assess diverse coding and decoding strategies for multiple applications like compression and data transmission.                                          |
| CO4       | Formulate streamlined codes for error detection and correction techniques.                                                                               |

# Subject/Code No: Introduction to MEMS (Professional Elective-II), 6EC5-11 LTP: 3+0+0 Semester: VI Course Outcomes

| CO Number | CO Definition                                                                                                                                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Grasp the underlying concepts encompassing the basic principles, configuration, production, characteristics, and methodology behind MEMS/NEMS, encompassing Micro devices, Micro systems, and Micromachining methodologies. |
| CO2       | Utilize MEMS technology to craft minute, accurate entities.                                                                                                                                                                 |
| CO3       | Investigate the impact of scaling on Micro/Nano Sensors within distinct applications.                                                                                                                                       |
| CO4       | Formulate and execute the blueprint and construction of Micro/Nano devices, along with Micro/Nano systems, to address tangible real-world predicaments.                                                                     |

### Subject/Code No: Nano Electronics (Professional Elective-II), 6EC5-12 LTP: 3+0+0 Semester: VI Course Outcomes

| CO Number | CO Definition                                                                                                                                                                                                                        |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Explain and understand the Schrodinger equation, CMOS Scaling, the nano scale MOSFET, Finfets, Vertical MOSFETs, Resonant Tunneling Diode, Coulomb dots, Quantum blockade, Single electron transistors, Carbon nanotube electronics. |
| CO2       | Use different methods to get energy, wave function, propagation constant, and channel length in MOSFETs and CMOS.                                                                                                                    |
| CO3       | Analyze and identify the changes in the parameters like inter-atomic distance, 2D and 3D structure, Scaling of CMOS.                                                                                                                 |
| CO4       | Synthesis the structure of CMOS, Finfet, Vertical MOSFET and Carbon nano tubes.                                                                                                                                                      |



# Subject/Code No: Computer Network Lab, 6EC4-21 LTP: 0+0+4 Semester: VI Course Outcomes

| CO Number | CO Definition                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------|
| CO1       | Understand the principles of TCP/IP protocols, layered architecture, as well as LAN, MAN, and WAN setups. |
| CO2       | Apply data structures in networking, incorporating weighted and unweighted graphs.                        |
| CO3       | Elaborate on the simulation of Queuing Theory.                                                            |
| CO4       | Create a LAN Training Kit employing CSMA/CD/CA principles.                                                |

# Subject/Code No: Antenna and Wave Propagation Lab, 6EC4-22 LTP: 0+0+2 Semester: VI Course Outcomes

| CO Number | CO Definition                                                                                                                                                                                       |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Grasp the fundamental idea behind antenna radiation mechanisms employed in wireless communication.                                                                                                  |
| CO2       | Employ various communication modes tailored to specific applications such as mobile and satellite contexts.                                                                                         |
| CO3       | Examine and detect issues within MOS and CMOS devices (such as assessing gate delay, transistor dimensions, power usage, as well as performance under extreme pressure and temperature conditions). |
| CO4       | Investigate the characteristics of diverse antenna types with regards to their inherent parameters.                                                                                                 |

# Subject/Code No: Electronics Design Lab, 6EC4-23 LTP: 0+0+4 Semester: VI Course Outcomes

| CO Number | CO Definition                                                                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Grasp the fundamental principles and practical uses of Op-amp IC (741), 555 timer IC, Cathode Ray Oscilloscope (CRO), breadboard, and function generator. |
| CO2       | Utilize distinct design approaches on a breadboard employing IC-741 and IC-555 for various functionalities.                                               |
| CO3       | Examine the performance of diverse circuit configurations involving IC-741 and IC-555 across a spectrum of applications and inputs.                       |
| CO4       | Formulate circuit diagrams on a breadboard utilizing IC-741 and IC-555 to cater to distinct application requirements.                                     |



# Subject/Code No: Power Electronics Lab, 6EC4-24 LTP: 0+0+2 Semester: VI Course Outcomes

| CO Number | CO Definition                                                                                                                                                                                           |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Comprehend AC voltage regulation through TRIAC, antiparallel thyristors, TRIAC and DIAC, in addition to generating pulses using the DSP/FPGA platform.                                                  |
| CO2       | Comprehend AC voltage regulation through TRIAC, antiparallel thyristors, TRIAC and DIAC, in addition to generating pulses using the DSP/FPGA platform.                                                  |
| СОЗ       | Explore single-phase bridge converters, single-phase cycloconverters, and single-phase dual converters, alongside direct current (DC) motor speed management.                                           |
| CO4       | Execute experiments encompassing single-phase PWM inverters, buck, boost, and buck-boost regulators.                                                                                                    |
| CO5       | Implement velocity regulation of a DC motor employing a chopper, and regulate induction motors via single-phase AC voltage regulators, coupled with open-loop and closed-loop motor control strategies. |

Subject/Code No: VLSI Design, 7EC5-11 LTP: 3+0+0
Semester: VII
Course Outcome

| CO Number | CO Definition                                                                                                                                                                                                                                                                                                                  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Comprehend and elucidate diverse digital components, such as MOSFET, NMOS inverter, PMOS inverter, CMOS, CMOS inverter, logic gates, Clocked CMOS (C2MOS) logic, DOMINO logic, NORA logic, NP(ZIPPER) logic, and PE (pre-charge and evaluation) logic. Gain insight into fundamental memory circuits, including SRAM and DRAM. |
| CO2       | Employ various technical approaches to acquire MOSFET parameters, encompassing channel length modulation, higher-order effects, model parameters, drain-source current relationship, and body effect.                                                                                                                          |
| CO3       | Apply techniques to extract parameters from CMOS devices, like inverter parameters, pull-up and pull-down ratios, and noise margins.                                                                                                                                                                                           |
| CO4       | Conduct analysis to identify issues within MOS and CMOS devices, such as estimating gate delay, transistor sizing, power dissipation, overpressure, and temperature-related concerns.                                                                                                                                          |
| CO5       | Generate VHDL code for both combinational and sequential components. Devise layouts and stick diagrams for MOSFET, CMOS inverters, as well as any Boolean expressions, and explore distinct fabrication methods for NMOS and CMOS technologies.                                                                                |

Subject/Code No: CMOS Design, 7EC5-13 LTP: 3+0+0
Semester: VII
Course Outcomes

| CO Number | CO Definition                                                                |
|-----------|------------------------------------------------------------------------------|
| CO1       | Elaborate on the manufacturing procedure and characteristics of MOS devices. |
| CO2       | Grasp the necessity of hardware description language and its attributes.     |
| CO3       | Investigate the influence of scaling on MOS circuits.                        |
| CO4       | Formulate both combinational and sequential circuits utilizing VHDL.         |



# Subject/Code No: VLSI Design Lab, 7EC4-21 LTP: 0+0+4 Semester: VII Course Outcomes

| CO Number | CO Definition                                                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Grasp the steps involved in the physical design workflow of Digital Integrated Circuits.                                          |
| CO2       | Outline the method for creating programmable circuits.                                                                            |
| CO3       | Display proficiency in utilizing diverse Electronic Design Automation (EDA) tools for designing digital systems.                  |
| CO4       | Analyze a range of combinational and sequential circuits using VHDL on an FPGA platform.                                          |
| CO5       | Execute the schematic and layout design for different digital CMOS logic circuits using Electronic Design Automation (EDA) tools. |

### Subject/Code No: Advance Communication Lab (MATLAB Simulation), 7EC4-22 LTP: 0+0+2 Semester: VII Course Outcomes

| CO Number | CO Definition                                                                                                                                 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Devise and exhibit digital modulation methods.                                                                                                |
| CO2       | Illustrate and gauge wave propagation in microstrip antennas.                                                                                 |
| CO3       | Examine the attributes of microstrip components and assess parameter measurements.                                                            |
| CO4       | Construct a model for an optical communication system and analyze its traits.                                                                 |
| CO5       | Execute simulations for digital communication principles, calculating and presenting diverse parameters along with graphical representations. |

### Subject/Code No: Optical Communication Lab, 7EC4-23 LTP: 0+0+2 Semester: VII Course Outcomes

| CO Number | CO Definition                                                                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Elaborate on the principles governing optical sources and methods for power launching and coupling.                                                       |
| CO2       | Contrast the attributes of fiber optic receivers.                                                                                                         |
| CO3       | Devise a fiber optic connection considering resource constraints.                                                                                         |
| CO4       | Display comprehension of optical fiber communication links, encompassing the architecture, signal propagation, and transmission traits of optical fibers. |



# Subject/Code No: Industrial Training, 7EC7-30 LTP: 1+0+0 Semester: VII Course Outcomes

| CO Number | CO Definition                                                        |
|-----------|----------------------------------------------------------------------|
| CO1       | Observe and comprehend industrial processes.                         |
| CO2       | Exhibit diverse industrial machinery.                                |
| CO3       | Cultivate proficiency in report writing.                             |
| CO4       | Boost communication skills and self-assurance through presentations. |

Subject/Code No: Seminar, 7EC7-40 LTP: 2+0+0 Semester: VII Course Outcomes

| CO Number | CO Definition                                                                                                 |
|-----------|---------------------------------------------------------------------------------------------------------------|
| CO1       | Recognize a real-time industrial or societal issue within the field of engineering to choose a seminar topic. |
| CO2       | Explore different documented solutions to engineering challenges across various societal contexts.            |
| CO3       | Assess and evaluate the outcomes of the research conducted in the chosen domain.                              |
| CO4       | Compile a proficient document incorporating personal insights and conclusions.                                |
| CO5       | Elevate communication process and self-assurance through the process of presenting the findings.              |

Subject/Code No: Electrical Machines and Drive, 7EE6-60.1 LTP: 3+0+0
Semester: VII
Course Outcomes

| CO Number | CO Definition                                                                                                |
|-----------|--------------------------------------------------------------------------------------------------------------|
| CO1       | Comprehend the structural intricacies and operational principles of rotating electrical devices.             |
| CO2       | Attain understanding regarding the operational principles and diverse facets of electric propulsion systems. |
| CO3       | Evaluate different methods of controlling speed in various electric propulsion systems.                      |
| CO4       | Cultivate expertise in designing speed and current control circuits for an electric propulsion system.       |



# Subject/Code No: Power Generation Sources, 7EE6-60.2 LTP: 3+0+0 Semester: VII Course Outcomes

| CO Number | CO Definition                                                       |
|-----------|---------------------------------------------------------------------|
| CO1       | Categorize and explain different types of renewable energy options. |
| CO2       | Anticipate potential sources of renewable energy.                   |
| CO3       | Provide visual representations of renewable energy alternatives.    |
| CO4       | Restructure the array of energy sources.                            |
| CO5       | Arrange renewable energy sources based on societal requirements.    |

### Subject/Code No: Environmental Impact Analysis, 7CE6-60.1 LTP: 3+0+0 Semester: VII Course Outcomes

| CO Number | CO Definition                                                                                                                                                                                 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Explain the meanings of the terms utilized in Environmental Impact Assessment (EIA) and establish criteria for quality benchmarks pertaining to various elements of the environment.          |
| CO2       | Comprehend the fundamental notions concerning EIA, such as ecological disruption, consequences of contamination, and the significance of involving stakeholders throughout the EIA procedure. |
| CO3       | Construct a structured framework for conducting an environmental impact assessment concerning a project or undertaking under consideration.                                                   |
| CO4       | Evaluate diverse approaches and the ramifications associated with Environmental Impact Assessment (EIA), encompassing a range of methodologies and their respective impacts.                  |
| CO5       | Develop proficiency in deploying different searching and sorting methods, and make informed decisions regarding their selection based on specific requirements.                               |

# Subject/Code No: Disaster Management, 7CE6-60.2 LTP: 3+0+0 Semester: VII Course Outcomes

| CO Number | CO Definition                                                                                                                                                                                                           |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Comprehend the notion of disasters, risks, hazards, capacity enhancement, dealing with catastrophes, and the regulations outlined in the disaster management act and policy within the context of India.                |
| CO2       | Elaborate on the idea of disasters, risks, and hazards, as well as the process of capacity development, strategies for managing crises, and the legal framework provided by India's disaster management act and policy. |
| CO3       | Categorize different types of disasters, associated risks, and potential hazards, while also exploring various methodologies for effectively managing these situations.                                                 |
| CO4       | Apply the principles of capacity building, disaster coping mechanisms, and the implementation of India's disaster management act and policy to practical scenarios.                                                     |
| CO5       | Examine both natural and human-made disasters to gain a comprehensive understanding of their causes, impacts, and mitigation strategies.                                                                                |



# Subject/Code No: Quality Management/ISO 9000, 7CS6-60.1 LTP: 3+0+0 Semester: VII Course Outcomes

| CO Number | CO Definition                                                                                            |
|-----------|----------------------------------------------------------------------------------------------------------|
| CO1       | Understand the significance of quality control and how individuals can impact the level of quality.      |
| CO2       | Examine the constituents comprising a quality management framework and the function it serves.           |
| CO3       | Implement quality control methodologies to enhance computer-based systems.                               |
| CO4       | Devise diverse elements of a quality system to preempt failures and the need for subsequent corrections. |

### Subject/Code No: Artificial Intelligence and Expert Systems, 8EC5-11 LTP: 3+0+0 Semester: VIII Course Outcomes

| CO Number | CO Definition                                                                                                                                        |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Understand the fundamentals of artificial intelligence (AI) and expert systems.                                                                      |
| CO2       | Utilize fundamental AI principles in solving problems, making inferences, perceiving information, representing knowledge, and facilitating learning. |
| CO3       | Display competence in employing the scientific method for machine learning models.                                                                   |
| CO4       | Delve into the fundamentals of Artificial Neural Networks (ANN) and various optimization techniques.                                                 |

### Subject/Code No: Digital Image and Video Processing, 8EC5-12 LTP: 3+0+0 Semester: VIII Course Outcomes

| CO Number | CO Definition                                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------|
| CO1       | Comprehend the process of image creation and the significance of various color models.                                      |
| CO2       | Calculate the impact of changes in intensity on an image and implement filtering in both the spatial and frequency domains. |
| CO3       | Explain methods for improving the quality of images and restoring those that are damaged in a deteriorated setting.         |
| CO4       | Evaluate the influence and necessity of morphological operations on an image, along with their practical uses.              |



# Subject/Code No: Simulation Modeling and Analysis, 8ME6-60.2 LTP: 3+0+0 Semester: VIII Course Outcomes

| CO Number | CO Definition                                                                                                                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Provide a definition of simulation modeling and explore its application in real-life organizational scenarios.                      |
| CO2       | Explore the utilization of random numbers and random variates methodology across various practical contexts.                        |
| CO3       | Scrutinize the responsiveness of simulation-generated solutions when dealing with authentic challenges.                             |
| CO4       | Elaborate on the interpretation of simulation models and their application in resolving crucial concerns within practical problems. |

# Subject/Code No: Operations Research, 8ME6-60.1 LTP: 3+0+0 Semester: VIII Course Outcomes

| CO Number | CO Definition                                                                                    |
|-----------|--------------------------------------------------------------------------------------------------|
| CO1       | Create mathematical models for intricate engineering issues.                                     |
| CO2       | Evaluate different optimization methods using suitable tools.                                    |
| CO3       | Recognize appropriate optimization approaches for addressing industrial and societal challenges. |
| CO4       | Decode the solutions and implement the outcomes to tackle intricate engineering problems.        |

### Subject/Code No: Energy Audit and Demand side Management, 8EE6-60.1 LTP: 3+0+0 Semester: VIII Course Outcomes

| CO Number | CO Definition                                                                                                                                            |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Comprehend the prevailing energy situations in India.                                                                                                    |
| CO2       | Grasp the process of energy assessment for motors, lighting systems, and buildings using suitable analysis techniques facilitated by survey instruments. |
| CO3       | Acquire knowledge about electrical load management and demand-side management.                                                                           |
| CO4       | Implement energy conservation practices in transportation, agriculture, residential, and commercial domains.                                             |



Subject/Code No: Soft Computing, 8EE6-60.2 LTP: 3+0+0 Semester: VIII Course Outcomes

| CO Number | CO Definition                                                                                   |
|-----------|-------------------------------------------------------------------------------------------------|
| CO1       | Explore the realm of soft computing methods and their practical uses.                           |
| CO2       | Examine diverse neural network structures.                                                      |
| CO3       | Provide explanations for fuzzy systems.                                                         |
| CO4       | Grasp the principles behind genetic algorithms and how they are put to use.                     |
| CO5       | Pinpoint and opt for an appropriate soft computing technology for addressing the issue at hand. |

Subject/Code No: Composite Materials, 8CE6-60.1 LTP: 3+0+0
Semester: VIII
Course Outcomes

| CO Number | CO Definition                                                                                                                                  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Outline the fundamental principles of composites, encompassing their composition, structure, and inherent characteristics.                     |
| CO2       | Derive the physio-mechanical attributes of composites through experimental tests and measurements.                                             |
| CO3       | Evaluate the engineering properties of composite materials through a comprehensive assessment.                                                 |
| CO4       | Investigate the breakdown and upkeep of composite materials, conducting an in-depth analysis of failure mechanisms and maintenance strategies. |

Subject/Code No: Fire and Safety Engineering, 8CE6-60.2 LTP: 3+0+0 Semester: VIII Course Outcomes

| CO Number | CO Definition                                                                                                           |
|-----------|-------------------------------------------------------------------------------------------------------------------------|
| CO1       | Elaborate on the core concepts of Fire Engineering.                                                                     |
| CO2       | Utilize the acquired principles in the formulation, creation, and supervision of buildings that prioritize fire safety. |
| CO3       | Evaluate firefighting systems, regulatory techniques, and perilous substances.                                          |
| CO4       | Devise fire-secure structures using fire-resistant construction methods while adhering to safety laws.                  |

Subject/Code No: Big Data Analytics, 8CS6-60.1 LTP: 3+0+0 Semester: VIII

**Course Outcomes** 

| CO Number | CO Definition                                                   |
|-----------|-----------------------------------------------------------------|
| CO1       | Comprehension of Big Data and its Industry Requirements.        |
| CO2       | Creation of Hadoop and Google File System.                      |
| CO3       | Evaluation of MapReduce and Fundamental MapReduce Applications. |
| CO4       | Development of a Hive Data System.                              |



Subject/Code No: IPR, Copyright and Cyber Law of India, 8CS6-60.2 LTP: 3+0+0 Semester: VIII Course Outcomes

| CO Number | CO Definition                                                                                                                                                                    |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Examine and analyze the internet's Domain Name System (DNS) and different cybercrime activities occurring in the digital realm.                                                  |
| CO2       | Comprehend the notion of Intellectual Property (IP) and Intellectual Property Rights (IPR), with a specific focus on both Indian and international contexts.                     |
| CO3       | Employ principles of IP law, encompassing copyright, patents, designs, and trademarks, to tangible scenarios.                                                                    |
| CO4       | Evaluate the societal consequences of IP law and policy. Investigate matters related to jurisdiction in the cyber domain and the realm of Competition Law in the Indian context. |

Subject/Code No: Internet of Things (IOT) Lab, 8EC4-21 LTP: 0+0+2
Semester: VIII
Course Outcomes

| CO Number | CO Definition                                                                                                                            |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Comprehend the Internet of Things concept.                                                                                               |
| CO2       | Execute the integration of diverse sensors with Arduino/Raspberry Pi.                                                                    |
| CO3       | Illustrate the capability to wirelessly transmit data between distinct devices.                                                          |
| CO4       | Display proficiency in uploading/downloading sensor data to/from cloud and server, Evaluate different SQL queries from a MySQL database. |

Subject/Code No: Skill Development Lab, 8EC4-22 LTP: 0+0+2

Semester: VIII Course Outcomes

| CO Number | CO Definition                                                                                                                                   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Understand diverse contemporary engineering tools and software applications.                                                                    |
| CO2       | Recognize the present demands of industries.                                                                                                    |
| CO3       | Apply assorted tools and software using distinct design patterns.                                                                               |
| CO4       | Choose a startup for fostering innovation and entrepreneurship, create projects aimed at delivering solutions for various real-life challenges. |

Subject/Code No: Project, 8EC7-50 LTP: 3+0+0

Semester: VIII
Course Outcomes

| CO Number | CO Definition                                                                                                                      |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Obtain proficiency in documentation, project management, and problem-solving abilities.                                            |
| CO2       | Recognize, assess, and resolve practical issues.                                                                                   |
| CO3       | Cultivate professionalism and enhance teamwork acumen.                                                                             |
| CO4       | Implement both spoken and written communication skills, Apply the technical expertise garnered from prior courses comprehensively. |

#### **Bachelor of Technology Electrical Engineering**

#### **Program – Electrical Engineering**

Subject/Code No: Electrical Materials/5EE-301 Semester: 5th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                                                                                                                                                                                        |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Learn about the concepts of Bonding and types of solids, Crystalline state and their defects, Classical theory of electrical and thermal conduction in solids, temperature dependence of resistivity, skin effect, Hall effect.                                                                      |
| CO2       | Acquire knowledge of Dielectric Properties of Insulators in Static and Alternating field, Properties of Ferro-Electric materials, Polarization, Piezoelectricity, Frequency dependence of Electronic and Ionic Polarizability, Complex dielectric constant of non-dipolar solids, dielectric losses. |
| CO3       | Apply concepts of Magnetization of matter, Magnetic Material Classification, Ferromagnetic Origin, Curie-Weiss Law, Soft and Hard Magnetic Materials, Superconductivity and its origin, Zero resistance and Meissner Effect, critical current density.                                               |

#### Subject/Code No: POWER SYSTEM-I/5EE402 Semester: 5th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                        |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Understand the overall framework of the power system while taking various faults and their mitigation measures into account.         |
| CO2       | Illustrate various electrical characteristics of transmission lines in transient, sub-transient, and steady state stability modes.   |
| CO3       | Interpret the integration of distributed generation with grid while taking into account the protection system in real-time projects. |
| CO4       | Estimate the electrical machines parameters & insulation requirements under different stability modes.                               |

### Subject/Code No: Control System/5EE4-03 Semester: 5th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                                 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Utilize the core principles of both linear and nonlinear control systems to mathematically express their characteristics.                     |
| CO2       | Compare and contrast the temporal and spectral reactions of systems that are Linear Time Invariant, examining their behaviors and properties. |
| CO3       | Evaluate the state space parameters within conventional control systems, considering their significance and impact.                           |

#### Subject/Code No: Microprocessor/ 5EE4-04 Semester: 5th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                    |
|-----------|------------------------------------------------------------------------------------------------------------------|
| CO1       | Elaborate the fundamental concepts of 8051 architecture, programming instructions, and 8051 interfacing schemes. |
| CO2       | Indicate the programming knowledge for external devices interfacing and serial communication                     |
| CO3       | Understand the memory expansion and interfacing of peripheral device such as ADC, DAC, timers, counters, etc.    |
| CO4       | Develop 8051 programs for controlling external/interfacing devices for solving a particular task/problem.        |

#### Subject/Code No: Electrical Machine Design/5EE4-05 Semester: 5th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                 |
|-----------|-----------------------------------------------------------------------------------------------|
| CO1       | Interpret the characteristics of engineering materials used for electrical machine designing. |
| CO2       | Infer the performance characteristics of electrical Machines with the specified constraints.  |
| CO3       | Relate electrical machine models in computer aided design software.                           |
| CO4       | Interpret the design of windings & core of electrical machines.                               |

#### Subject/Code No: Restructured Power System/5EE5-11 Semester: 5th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                                              |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Discover the restructuring process, reasons and objectives of deregulation, market & pricing models, and congestion management.                            |
| CO2       | Categorize electricity market models, congestion management methods, ancillary services, and transmission pricing.                                         |
| CO3       | Compare methods of congestion management, market models & pricing schemes to identify the best options.                                                    |
| CO4       | Prepare theoretically a restructured model of existing power system by taking into account network congestion, best pricing model, and ancillary services. |

#### Subject/Code No: Power System - I Lab/5EE4-21 Semester: 5th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                           |
|-----------|-----------------------------------------------------------------------------------------|
| CO1       | Illustrate the basic layouts of hydro, thermal, nuclear and gas power plants.           |
| CO2       | Distinguish the parameters of the feeders, distributors, and EHV transmission lines.    |
| CO3       | Evaluate the dielectric strength of transformer oil, insulating materials & insulators. |
| CO4       | Create a probability tool to forecast load for short-, medium-, and long-term planning. |

### Subject/Code No: Control System Lab/5EE4-22 Semester: 5th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                |
|-----------|------------------------------------------------------------------------------|
| CO1       | Analyze the output response of a given system for different test signals.    |
| CO2       | Design the 1st order and 2nd order circuits for transient response analysis. |
| CO3       | Identify the frequency response of various compensating networks.            |
| CO4       | Investigate the various approaches for controller parameter tuning.          |
| CO5       | Device the stability of control system using Bode plots                      |

#### Subject/Code No: Microprocessor Lab/5EE4-23 Semester: 5th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Demonstrate the functions, operations, and memory structure and hardware units of 8085 microprocessor kit.                    |
| CO2       | Evaluate different waveforms using 8253 / 8254 programmable timer.                                                            |
| CO3       | Build and demonstrate assembly level programs for transferring data to specified output ports in serial and parallel fashion. |
| CO4       | Fabricate 8-bit LED/LCD interface to 8085 microprocessor kit using 8155 and 8255.                                             |
| CO5       | Develop programs to perform addition, subtraction, division, block transfer, searching, sorting, etc using assembly language. |

#### Subject/Code No: System Programming Lab/5EE4-24 Semester: 5th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                     |
|-----------|-------------------------------------------------------------------------------------------------------------------|
| CO1       | Simulate the basic of MATLAB features and syntaxes in mathematical Programming.                                   |
| CO2       | Solve various basic electrical and electronic problems in MATLAB environment                                      |
| CO3       | Execute the single-phase induction machine Torque- speed characteristics and transformer test in MATLAB Simulink. |
| CO4       | Design Single Phase Full Wave Diode Bridge Rectifier with LC Filter in MATLAB Simulink.                           |
| CO5       | Evaluate the importance of MATLAB in research by simulation work                                                  |

### Subject/Code No: Industrial Training/5EE7-30 Semester: 5th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------|
| CO1       | Recognize industrial methodologies and fields in collaboration with industry experts                      |
| CO2       | Investigate sophisticated tools and methods employed in industrial processing.                            |
| CO3       | Enhance understanding of overall workplace etiquette and foster interpersonal and teamwork proficiencies. |
| CO4       | Construct adept presentations and professional work documents                                             |
| CO5       | Build the professional presentations and work reports.                                                    |

#### Subject/Code No: Computer Architecture/6EE3-01 Semester: 6th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                                                                                            |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Explain the structure, memory hierarchy, and input-output arrangement of computers, incorporating details about a 16-bit and 32-bit microprocessor.                                                      |
| CO2       | Explore the various addressing modes, programming models, instruction-level pipelining, and the role of memory management units.                                                                         |
| CO3       | Evaluate the effectiveness of a multi-bus organization, the significance of interrupts and interrupt controllers, the utilization of real mode addressing, and the implementation of dynamic scheduling. |
| CO4       | Discuss the interplay between data types, microinstructions, memory classifications, interface circuits, and instruction sets in the context of computer system design.                                  |

### Subject/Code No: Power System - II/6EE4-02 Semester: 6th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                           |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Manipulate the power flow equations to analyze the voltage and frequency issues of system.                                              |
| CO2       | Examine the system stability and contingency by observing the system voltage and frequency.                                             |
| CO3       | Interpret the power and demand side management in the prospect of optimum utilization of electrical energy by dynamic pricing strategy. |
| CO4       | Summarize different case studies on power system to assess system security.                                                             |

#### Subject/Code No: Power System Protection/6EE4-03 Semester: 6th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Understand the fundamentals of fault analysis, power system protection and the components involved in power system protection.      |
| CO2       | Describe the concepts of under-frequency, under-voltage and df/dt relays, wide area measurement system and over current protection. |
| CO3       | Summarize the protection schemes for power system components.                                                                       |
| CO4       | Understand the implementation of the digital protection scheme with the help of signal processing techniques.                       |

Semester: 6th

### Subject/Code No: Electrical Energy Conversion and Auditing/6EE4-04 Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Illustrate the energy landscape, energy approach, regulations pertaining to energy, ensuring energy stability, and the enhancement of energy utilization. |
| CO2       | Examine methods for conserving energy and technologies that promote efficiency in the creation of electrical and industrial machinery.                    |
| CO3       | Assess the pricing structure, conduct energy audits, manage energy consumption, and appraise the energy equilibrium within a company or entity.           |
| CO4       | Devise strategies for optimizing energy usage, enhancing power factor, and replacing fuels and energy sources.                                            |

### Subject/Code No: Electric Drives/6EE4-05 Semester: 6th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                                                                                                             |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Elaborate on the intricate principles behind DC and AC drives, delve into the nuances of scalar and vector control methods for alternating current motors, and explore the operation of drives across multiple quadrants. |
| CO2       | Investigate the interconnection between power electronics and robust control systems knowledge, examining how these domains synergize to achieve meticulous speed regulation for both AC and DC motors.                   |
| CO3       | Formulate the closed-loop control architecture of DC drives and expound upon the design intricacies inherent in achieving vector control for AC drives.                                                                   |
| CO4       | Assess and scrutinize the array of application-oriented precision speed control techniques tailored for both AC and DC motor, considering their effectiveness and suitability in different scenarios.                     |

#### Subject/Code No: Power System Planning. /6EE5-11 Semester: 6th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                               |
|-----------|---------------------------------------------------------------------------------------------|
| CO1       | Brief about the basic structure of Indian power sector with organizing & monitoring bodies. |
| CO2       | Select the Reliability Planning Criteria for Generation, Transmission and Distribution.     |
| CO3       | Evaluate the factors affecting load dispatch and modeling of Generation Sources.            |
| CO4       | Estimate the Objectives of Transmission Planning with Network Reconfiguration.              |

#### Subject/Code No: Electrical and Hybrid Vehicles. /6EE5-13 Semester: 6th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                                                                                               |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Illustrate diverse electric vehicle configurations and their constituent elements, outline hybrid vehicle setups, dimension components appropriately, and implement effective energy management strategies. |
| CO2       | Assess the operational characteristics of electric and hybrid electric vehicles.                                                                                                                            |
| CO3       | Devise hybrid vehicle and battery electric vehicle designs incorporating refined strategies for managing energy efficiently.                                                                                |
| CO4       | Assess the drive train configurations in both electric and hybrid electric vehicles.                                                                                                                        |

### Subject/Code No: Power System - II Lab/6EE4-21 Semester: 6th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                               |
|-----------|-------------------------------------------------------------------------------------------------------------|
| CO1       | Evaluate the various parameters of a power system network (min 3 bus) using different load flow techniques. |
| CO2       | Investigate the transient stability of power system network (min 3 buses).                                  |
| CO3       | Find optimal power flow with the help of analytical and iterative methods.                                  |
| CO4       | Design a power system network (min 3 bus) and analyze the severity of various types of faults.              |



## Subject/Code No: Electric Drives Lab/6EE4-22 Semester: 6th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------|
| CO1       | Differentiate the testing of firing circuits in three phase-controlled bridge converters.                                   |
| CO2       | Examine the operation of three phase fully and half controlled converters for different types of loads experimentally.      |
| CO3       | Demonstrate the speed control methods of AC & DC motors.                                                                    |
| CO4       | Illustrate operation and analysis of different converters with reference to control strategy.                               |
| CO5       | Analyze power quality aspects of three-phase controlled converters by calculating different parameters for different loads. |

## Subject/Code No: Power System Protection Lab/6EE4-23 Semester: 6th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                                    |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Determine fault type, fault impedance and fault location during single line to ground fault, line-to line fault and double line to ground fault. |
| CO2       | Explain the operation of micro-controller based over current relay in DMT type and IDMT type.                                                    |
| CO3       | Analyze and discuss the operation of micro-controller based under voltage relay, and micro-controller based over voltage relay.                  |
| CO4       | Explain the operation of micro-controller based un-biased single-phase differential relay.                                                       |

## Subject/Code No: Modeling and simulation lab/6EE4-24 Semester: 6th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                                            |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Acquire proficiency in the software tools essential for the simulation of machinery and power systems. Apply this knowledge practically.                 |
| CO2       | Examine and contrast the operational effectiveness of electrical machinery when working alongside reactive power compensation equipment.                 |
| CO3       | Assess the functionality of Flexible AC Transmission System (FACTS) controllers based on their suitability for power system applications.                |
| CO4       | Devise a proficient Single Machine Infinite Bus (SMIB) model that incorporates a FACTS controller, employing MATLAB software as the platform for design. |

Semester: 7th

## Subject/Code No: Power Quality and Facts/7EE5-12 LTP: 3+0+0 Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                                   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Illustrate both compensated and uncompensated transmission line configurations, and then contrast the effects of series and shunt compensation. |
| CO2       | Examine FACTS (Flexible AC Transmission Systems) devices, detailing their operational principles and applications within electrical systems.    |
| CO3       | Analyze the distinctions among power quality issues in distribution systems.                                                                    |
| CO4       | Illustrate DSTATCOM & Dynamic Voltage Restorer                                                                                                  |

### Subject/Code No: Wind and Solar Energy Systems. /7EE5-11 LTP: 3+0+0 Semester: 7th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                   |
|-----------|-------------------------------------------------------------------------------------------------|
| CO1       | Use the concept of wind and solar pv energy generation in energy applications.                  |
| CO2       | Categorize the different topologies of wind and solar power generation.                         |
| CO3       | Evaluate the hybrid and standalone solar and Wind energy systems.                               |
| CO4       | Investigate the different issues in integration of wind and solar energy systems into the grid. |

## Subject/Code No: Embedded Systems Lab/7EE4-21 LTP: 0+0+3 Semester: 7th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                              |
|-----------|------------------------------------------------------------------------------------------------------------|
| CO1       | Elaborate the fundamentals of embedded system and sensor integration.                                      |
| CO2       | Simulate the programming knowledge for controlling a real time process using hardware in loop system.      |
| CO3       | Explore the specific sensor needs within a given control process.                                          |
| CO4       | Critique the time needed for processing real-time data into the digital domain and the reverse conversion. |
| CO5       | Assess intricate real-world processes within embedded systems.                                             |



### Subject/Code No: Advance control system lab/7EE4-22 LTP: 0+0+3 Semester: 7th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                             |
|-----------|---------------------------------------------------------------------------------------------------------------------------|
| CO1       | Utilize MATLAB to showcase the temporal behavior of both rotary and linear servo systems.                                 |
| CO2       | Investigate the operational principles of speed and positioning control transfer functions for DC and AC servo motors.    |
| CO3       | Utilize MATLAB to conduct a frequency response analysis on a linearized model of an industrial robot for minor movements. |
| CO4       | Evaluate the effectiveness of P, PI, and PID controllers across diverse control system scenarios using MATLAB.            |
| CO5       | Devise Arduino-based control setups for real-world implementations involving pendulum and inverted pendulum systems.      |

### Subject/Code No: Industrial Training/7EE7-30 LTP: 0+0+3 Semester: 7th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                                  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Demonstrate competency in the field of electrical engineering through problem identification, formulation and solution.                        |
| CO2       | Develop the ability to work as an individual and in group with the capacity to be a leader or manager as well as an effective team member.     |
| CO3       | Implement skills effectively in oral and written communication, including report writing and power point presentations using multimedia tools. |
| CO4       | Analyze industrial problems as a part of industrial training curriculum.                                                                       |
| CO5       | Acquire practical understanding of theoretical aspects by participating in industrial projects.                                                |

## Subject/Code No: Seminar/7EE7-40 LTP: 0+0+3 Semester: 7th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                           |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Identify important practical concepts from the industry exposure and grasp the depth knowledge of the topic.                            |
| CO2       | Understand organizational issues including teams, attitudes and define work-life balance and its impact on organizations and employees. |
| CO3       | Get in touch with recent technologies.                                                                                                  |
| CO4       | Solve industrial problems as a part of industrial training curriculum.                                                                  |

### Subject/Code No: Power Generation Sources/7EE6-60.2 LTP: 3+0+0 Semester: 7th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                           |
|-----------|-----------------------------------------------------------------------------------------|
| CO1       | Describe the various renewable energy sources.                                          |
| CO2       | Inspect possible renewable energy sources.                                              |
| CO3       | Illustrate the renewable energy sources.                                                |
| CO4       | Identify the energy sources & propose renewable energy sources as societal application. |

### Subject/Code No: Electrical Machine and Drives/7EE6.601 LTP: 3+0+0 Semester: 7th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                       |
|-----------|-----------------------------------------------------------------------------------------------------|
| CO1       | Use the concepts of constructional details and principle of rotating machines in electrical drives. |
| CO2       | Identify motor rating and specification for efficient conversion.                                   |
| CO3       | Investigate the various control techniques for speed control on various electric drives.            |
| CO4       | Justify the design knowledge for various closed loop control of electric drives.                    |

### Subject/Code No: Advanced Electric Drives/8EE4-13 LTP: 3+0+0 Semester: 8th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Organize the advanced controls of AC drives including digital signal processing-based motion control.                               |
| CO2       | Differentiate transformations and reference frame theories on AC motors for implementing the vector control scheme.                 |
| CO3       | Argue the need for field flux control and DSP based control in real world application of AC motor drives.                           |
| CO4       | Investigate the vector or field-oriented control of ac drives to accommodate parameters variations for uncompromised speed control. |

### Subject/Code No: HVDC Transmission System/8EE4-11 LTP: 3+0+0 Semester: 8th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                              |
|-----------|----------------------------------------------------------------------------|
| CO1       | Demonstrate DC transmission topology along with components of HVDC system. |
| CO2       | Compare VSCs for control of HVDC systems.                                  |
| CO3       | Check stability issues in HVDC link.                                       |
| CO4       | Recommend proper MTDC link.                                                |



### Subject/Code No: Energy Audit and Demand side Management/8EE6-60.1 LTP: 3+0+0 Semester: 8th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                                                                                                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Show the energy scenario, energy strategy, energy laws, energy security and energy conservation in India.                                                                                                                                                                     |
| CO2       | Organize the Energy forecasting, Energy economics, Energy pricing and incentives, energy and its management, energy planning, and energy economics. Energy auditing of motors, lighting system and building, by appropriate analysis methods through survey instrumentations. |
| CO3       | Examine the Electrical-Load Management and Demand side Management in transport, agriculture, household and commercial sectors.                                                                                                                                                |
| CO4       | Investigate the pre or detail energy audit in lighting system, household and commercial buildings, agriculture, and electric machinery of an industry or organization.                                                                                                        |

### Subject/Code No: Soft Computing/8EE6-60.2 LTP: 3+0+0 Semester: 8th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                     |
|-----------|---------------------------------------------------------------------------------------------------|
| CO1       | Implement the various soft computing approaches for finding the optimal solutions.                |
| CO2       | Compare the feasibility of applying a soft computing methodology for a particular problem         |
| CO3       | Justify soft computing technologies such as FL, NN, GA to optimize the design of complex systems. |

### Subject/Code No: Energy Systems Lab/8EE4-21 LTP: 0+0+3 Semester: 8th Course Outcome Mapping with Program Outcome

| CO Number | CO Definition                                                                                                                                                                                   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Categorize Performance of Solar Flat Plate Thermal Collector Operation with Variation in Mass Flow Rate and Level of Radiation.                                                                 |
| CO2       | Compare wind turbine generators with DC generators, DFIG, PMSG etc.                                                                                                                             |
| CO3       | Write different components of Micro Grid, micro-hydel pumped storage system and Fuel Cell and its operation.                                                                                    |
| CO4       | Design and simulate hybrid wind-solar power generation along with Performance Assessment of Hybrid Power System by using Intelligent Controllers for on-grid and off-grid Hybrid Power Systems. |
| CO5       | Design and simulate hybrid wind-solar power generation along with Performance Assessment of Hybrid Power System by using Intelligent Controllers for on-grid and off-grid Hybrid Power Systems. |

Subject/Code No: Project/8EE7-50 LTP: 0+0+3 Semester: 8th Course Outcome Mapping with Program outcome

| CO Number | CO Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1       | Demonstrate literature survey and technical pre-requisites of the selected project topic. Select the category of project (1. Design & implementation 2. Analysis 3. Up gradation of old project) Work on the allocated project under the supervision of the assigned guide Survey the available literature (select base paper) on the allocated project topic (from various resources-books, research papers, dissertation reports) Gain expertise over the technical and non-technical aspects of the finalized project |
| CO2       | Predict the challenges in practical implementation of the project hardware/software and draft their possible alternate solutions. Identify and summarize the challenges in practical implementation of the project Make a rough draft of the possible alternate solutions, for the recognized challenges Choose the feasible, practically realizable and economically viable options Finalize at least one option (from the chosen) and proceed further as per the guidelines.                                           |
| CO3       | Evaluate the contemporary tools suitable for measuring and utilizing databases to address the identified issue(s).                                                                                                                                                                                                                                                                                                                                                                                                       |
| CO4       | Infer the result findings, compare with the benchmark models and justify the concluding remarks along with the future scope.                                                                                                                                                                                                                                                                                                                                                                                             |
| CO5       | Communicate knowledge and findings for lifelong learning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CO6       | Prepare technical report with ethical practices and communicate his/her findings in a project with presentation skills and confidence level.                                                                                                                                                                                                                                                                                                                                                                             |
| CO7       | Demonstrate knowledge and understanding of the Identified problem along with team to financially manage projects and in multidisciplinary environments.                                                                                                                                                                                                                                                                                                                                                                  |

### **CHAPTER VIII**

## Program wise CO-PO Mapping Session: 2021-22

### Common for all branches in first year Department of Applied Sciences

Subject/Code No: Communication Skills & 1FY1-03 LTP: 2+0+0 Semester: I / II semester

Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                                 | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Comprehend the fundamental Principles, Types, and Methods of good communication.                                                                                                                              | 2   | -   | -   | -   | 2   | 2   | -   | 2   | 2   | 3    | -    | 2    |
| CO2          | Apply the basic structural and grammatical knowledge of the constituents for technical writing.                                                                                                               | 1   | -   | -   | -   | 3   | 1   | -   | 1   | 1   | 3    | -    | 3    |
| CO3          | Develop the competence in writing skills related to various forms of technical and business communication                                                                                                     | 1   | -   | -   | -   | 3   | 1   | -   | 1   | 1   | 3    | -    | 3    |
| CO4          | Understand the genre of prose by reading loudly with correct pronunciation, stress intonation, and articulation of voice along with identifying and describing the connection between Literature and reality. | ,   | -   | 1   | -   | 1   | 1   | 1   | 1   | 1   | 3    | -    | 3    |
| CO5          | Develop the creativity and imagination through value-based genre of poetry by enhancing aesthetic and verbal ability.                                                                                         | -   | -   | -   | -   | 1   | 1   | -   | 1   | 1   | 3    | -    | 3    |

Subject/Code No: Human Values & 1FY1-05/2FY1-05 LTP: 2+0+0 Semester: I / II semester

Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                    | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Comprehend co-relationship between "Values"; and "skills" to ensure persistent happiness and prosperity.         | -   | -   | -   | -   | -   | 3   | 2   | 3   | -   | -    | -    | 3    |
| CO2          | Evaluate the coexistence of the Human Being - Harmony in Myself.                                                 | -   | 1   | -   | -   | -   | 2   | 2   | 2   | 1   | 1    |      | 3    |
| CO3          | Identify the role of harmony in family, society and universal order.                                             | -   | -   | -   | -   | -   | 2   | 1   | 2   | -   | -    | -    | 3    |
| CO4          | Develop and evaluate the holistic perception of harmony at all levels of existence.                              | -   | 1   | -   | -   | -   | 1   | 3   | 3   | 1   | 1    | 1    | 3    |
| CO5          | Create harmony in professional and personal lives by understanding Co-existence between human being with nature. | -   | 2   | -   | -   | -   | -   | 3   | 3   | -   | -    | -    | 2    |

### Subject/Code No: ENGINEERING MATHEMATICSI &1FY2-01

Semester: I semester

LTP: 3+1+0

### **Course Outcome Mapping with Program Outcome**

| CO<br>Number | CO Definition                                                                                                                                                            | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Learn the concept of calculus to appraise improper integral, surface area and volume of solid of revolution of various laminas.                                          | 3   | 2   | 2   | 1   | 1   | 1   | 1   | -   | -   | -    | 1    | 2    |
| CO2          | Differentiate the different techniques for convergence of sequence and series.                                                                                           | 3   | 2   | 2   | 2   | 1   | 1   | 1   | -   | -   | -    |      | 2    |
| CO3          | Analyze continuity, differentiability to solve the periodically extended function over the range using the concept of Fourier series.                                    | 2   | 2   | 2   | 2   | 1   | 1   | -   | -   | 1   | -    | 1    | 1    |
| CO4          | Application of Partial differentiation, problem-<br>solving using concepts and techniques from PDE's.                                                                    | 2   | 2   | 2   | 2   | 1   | 1   | -   | -   | -   | -    | 1    | 2    |
| CO5          | Apply the concept of calculus to double integrals and change of variables Application of Multiple integration involving cubes, sphere, theorem of green gauss and stokes | 2   | 2   | 2   | 2   | 2   | 2   | -   | -   | •   | •    | '    | 2    |

### Subject/Code No: ENGINEERING MATHEMATICS-II & 2FY2-01 LTP: 3+1+0

Semester: Il semester

### **Course Outcome Mapping with Program Outcome**

| CO<br>Number | CO Definition                                                                                                                                                                                        | PO1 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Comprehend the computational techniques and algebraic skills essential for the study of systems of linear equations, matrix algebra, Eigen values, Eigen vectors, orthogonality and diagonalization. | 3   | 2   | 2   | 1   | 1   | 1   | 1   | -   | -   | 1    | 1    | 2    |
| CO2          | Recognize ODEs and interpret the various methods for solving differential equation of first order and first degree.                                                                                  | 3   | 2   | 2   | 2   | 1   | 1   | 1   | -   | -   | -    | -    | 2    |
| CO3          | Differentiate the various applications of function of one variable in ODE of higher order.                                                                                                           | 2   | 2   | 2   | 2   | 1   | 1   | 1   | -   | i   | 1    | -    | 1    |
| CO4          | Evaluate the multivariable function using the concept of PDEs of first order.                                                                                                                        | 2   | 2   | 2   | 2   | 1   | 1   | -   | -   | -   | -    |      | 2    |
| CO5          | Apply the various uses of multivariable function and solve by the partial differential equation of higher order.                                                                                     | 2   | 2   | 2   | 2   | 2   | 2   | 1   | -   | -   | 1    | -    | 2    |

# Subject/Code No: Engineering Physics &1FY2-02 /2FY2-02 LTP: 3+1+0 Semester: I / II semester Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                 | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Comprehend the concepts of wave optics and phenomenon of interference and diffraction of light.                                                               | 3   | 3   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | 1    |
| CO2          | Recognize ODEs and interpret the various methods for solving differential equation of first order and first degree.                                           | 3   | 3   | 2   | ı   | -   | ı   | ı   | ı   | -   | -    | -    | 1    |
| CO3          | Apply the conceptual knowledge of coherence of light wave in different application of light wave and use in optical fiber communication.                      | 3   | 3   | 2   | 1   | -   | 1   | 1   | 1   | 1   | ı    | ı    | 1    |
| CO4          | Synthesize the scientific and engineering principles of materials science to identify the properties of material related to appropriate field of application. | 3   | 2   | 1   | 1   | -   | -   | -   | -   | -   | -    | -    | 1    |
| CO5          | Apply the laws of electromagnetic theory in propagation of wave and use in communication.                                                                     | 3   | 3   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | 1    |

## Subject/Code No: Engineering Chemistry &1FY2-03 /2FY2-03 LTP: 3+1+0 Semester: I / II semester Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                              | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Describe the fundamental water quality for domestic and industrial purpose so that students will be able to describe impurities present in water, boiler troubles and removal of impurities.               | 3   | 2   | -   | 1   | -   | 2   | 1   | -   | 1   | -    | -    | 1    |
| CO2          | Analyze the composition, characteristics and manufacturing methods of various types of solid, liquid and gaseous fuels and calculated calorific value of fuels for Industrial as well as domestic purposes | 3   | 2   | ı   | 1   | -   | 2   | 1   | -   | 1   | ı    | ı    | 1    |
| CO3          | Classify the dry and wet corrosion mechanisms and their protection methods. To investigate deterioration of metal through corrosion                                                                        | 2   | 1   | -   | 2   | -   | 2   | 2   | 1   | -   | -    | 1    | 2    |
| CO4          | Understand the composition and manufacturing methods of engineering materials namely cement and glass and recognize and estimate various properties of lubricants in several engineering process.          | 2   | 1   | -   | -   | -   | 2   | 3   | 1   | 1   | 1    | 1    | 2    |
| CO5          | Generating the generic drugs or medicines for various services in life long purpose by identifying the applications of organic reaction mechanism.                                                         | 2   | 1   | -   | -   | -   | 2   | 2   | 1   | 1   | -    | 1    | 3    |



## Subject/Code No: Programming for Problem Solving & 1FY3-06/2FY3-06 LTP: 2+0+0 Semester: I / II semester Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                             | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand the fundamental concepts of computers, algorithms, flowcharts and problem-solving techniques.                  | 2   | 2   | 2   | 2   | -   | 2   | -   | -   | 1   | 1    | 1    | 2    |
| CO2          | Translate the algorithms and flowcharts into C programs.                                                                  | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO3          | Analyze the debug process in C programming language and to express in written form.                                       | -   | 3   | -   | 3   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO4          | Formulate a problem into functions and create modular code that can be reused.                                            | 1   | 1   | 1   | 1   | 1   | -   | -   | -   | 2   | -    | 1    | -    |
| CO5          | Develop C programs to demonstrate the applications of derived data types such as arrays, pointers, strings and functions. | 1   | 2   | 1   | 2   | -   | -   | -   | -   | 3   | -    | 1    | -    |

## Subject/Code No: Basic Mechanical Engineering & 1FY3-07/2FY3-07 LTP: 3+1+0 Semester: I / II semester Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                  | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand the concepts of thermodynamics, power plants, machine design, Manufacturing Engineering and Industrial Engineering. | 3   | 2   | 2   | 2   | -   | 2   | -   | -   | 1   | -    | -    | 2    |
| CO2          | Receive the basic knowledge of pump and IC engine.                                                                             | 3   | 2   | 2   | 2   | -   | 2   | 1   | -   | 1   | -    | -    | 2    |
| CO3          | Comprehend the concept, types and application of refrigerator and air conditioning system and Transmission of Power.           | 3   | 2   | 2   | 2   | -   | 2   | -   | -   | -   | -    | -    | 2    |
| CO4          | Explain the different Patterns, Molding, Casting, Forging and Extrusion of Primary Manufacturing Processes.                    | 3   | 2   | 2   | 2   | -   | 2   | -   | -   | 1   | -    | -    | 1    |
| CO5          | Describe the various process and uses of Welding, Brazing, Engineering materials and Heat treatment of steel.                  | 3   | 2   | 2   | 2   | -   | 2   | ı   | ı   | ı   | ı    | -    | 1    |



## Subject/Code No: Basic Electrical Engineering & 1FY3-08/2FY3-08 Semester: I / II semester Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                              | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|----------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Evaluate the concept and process of various AC and DC circuit related elements, sources, laws, methods and theorems.       | 2   | 2   | 2   | 2   | -   | 2   | 1   | -   | -   | 1    | 1    | -    |
| CO2          | Explore the knowledge of transformers and its uses in applying the acquired knowledge to solve electrical circuit problem. | 3   | 3   | 3   | 3   | -   | 3   | -   | -   | -   | -    | -    | -    |
| CO3          | Analyze the characteristics, significance, construction and working of various power electronic devices.                   | 3   | 3   | 3   | 3   | -   | 3   | -   | -   | -   | -    | -    | -    |
| CO4          | Understand electromechanical energy conversion process.                                                                    | 3   | 3   | 3   | 3   | -   | 3   | -   | -   | -   | -    | -    | -    |
| CO5          | Explore knowledge of protective devices and energy consumption calculations.                                               | 3   | 3   | 3   | 3   | -   | 3   | -   | -   | -   | -    | -    | -    |

# Subject/Code No: Basic Civil Engineering & 1FY3-09/2FY3-09 LTP: 2+0+0 Semester: I / II semester Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                                          | P01 | P02 | P03 | P04 | P05 | P06 | P07 | PO8 | P09 | PO10 | P011 | PO12 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understanding the scope, specialization, and role of civil engineer with impact of infrastructural development on economy of country.                                                                                  | -   | -   | 3   | 1   | -   | 3   | 1   | -   | -   | -    | -    | 3    |
| CO2          | Explain the Object, Principles & Types of Surveying, analyzes the Linear Measurements of surveying and evaluates the angular measurement through compass and leveling process through the various leveling instrument. | 2   | -   | -   | -   | 2   | 2   | -   | -   | -   | -    | 2    | -    |
| CO3          | Analyze the importance of site selection, type of building Layout and Plan with introduction and components of Buildings & their functions.                                                                            | 2   | 1   | 1   | 1   | 1   | 2   | 2   | 1   | 1   | 1    | ı    | -    |
| CO4          | Understanding the traffic and road safety and evaluate the Modes of Transportation, Causes of Accidents and Create the Road Safety Measures.                                                                           | -   | -   | 3   | -   | -   | 3   | -   | -   | -   | -    | -    | 2    |
| CO5          | Classify the different types of pollutions, understand<br>the Rainwater Harvesting, Global warming, Climate<br>Change and solid Waste Management, analyze the<br>Primary and Secondary air pollutants.                 | -   | -   | -   | -   | -   | -   | 3   | -   | 3   | -    | -    | -    |

## Subject/Code No: Engineering Chemistry Lab & 1/2FY2-21 LTP:0+0+2 Semester: I / II semester Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                               | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Evaluate the strength of CuSO3.5H2O solution with<br>the help of Hypo solution, Ferrous Ammonium<br>Sulphate solution with the help of K2Cr2O7 solution<br>and NaOH and Na2CO3 in an alkali | 2   | -   | -   | -   | -   | 2   | 2   | 2   | 2   | -    | -    | 2    |
| CO2          | Analyze different properties of lubricating oil.                                                                                                                                            | 2   | 3   | -   | -   | -   | 2   | 2   | -   | -   | -    | -    | 2    |
| CO3          | Analyze quality of coal by proximate analysis.                                                                                                                                              | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO4          | Evaluate various quality parameters of water like harness, DO, Chlorine in water                                                                                                            | 2   | 2   | -   | ı   | 1   | 2   | 1   | 2   | 2   | ı    | ı    | 2    |
| CO5          | Understand about synthesis of generic drugs.                                                                                                                                                | 3   | -   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 3    |

Subject/Code No: Engineering Physics Lab &1/2FY2-20 LTP:0+0+2
Semester: I / II semester
Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                             | P01 | P02 | P03 | P04 | 50d | 90d | 704 | 80d | 60d | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand the fundamental concepts of wave optics through the interference and diffraction experiment                    | 3   | 2   | 1   | -   | ı   | ı   | 1   | ı   | 2   | -    | •    | -    |
| CO2          | Analyze the concept of light in dispersive power of material and height of a celestial object.                            | 3   | 2   | 1   | -   | -   | -   | -   | ı   | 2   | ı    |      | -    |
| CO3          | Describe and demonstrate the behavior of semiconductor characteristics.                                                   | 3   | 3   | 2   | -   | ı   | ı   | 1   | 1   | 2   | -    | -    | -    |
| CO4          | Applying the knowledge to show the charging and discharging behavior of capacitor with time in form of electrical energy. | 3   | 3   | 2   | -   | -   | -   | -   | 1   | 2   | -    | -    | -    |
| CO5          | Interpret the properties of Laser light and application in optical communication through optical fiber.                   | 3   | 3   | 2   | -   | -   | -   | -   | -   | 2   | -    | -    | -    |

Subject/Code No: Human Values Activities and Sports & 1/2FY1-23 LTP:0+0+2
Semester: I / II semester
Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                          | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Course Introduction-Need, Basic Guidelines, Content and Process for Value Education                                    | -   | -   | 3   | ı   | -   | -   | ı   | -   | -   | ı    | ı    | -    |
| CO2          | Understanding Harmony in the Human Being - Harmony in Myself                                                           | •   | 1   | 3   | •   | •   | 3   | 3   | 3   | 3   | 3    | 3    | -    |
| CO3          | Understanding Harmony in the Family and Society-Harmony in Human-Human Relationship                                    | -   | -   | 3   | •   | -   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO4          | Understanding Harmony in the Nature and Existence - Whole existence as Coexistence                                     | -   | -   | 3   | 1   | -   | 3   | 3   | 3   | 3   | 3    | 1    | 3    |
| CO5          | Implications of the above Holistic Understanding of Harmony on Professional Ethics. Natural acceptance of human values | -   | -   | 3   | -   | -   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |

Subject/Code No: Language Lab &1/ 2FY1-22 LTP:0+0+2 Semester: I / II semester Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                             | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | To understand Phonetic Symbols and Transcriptions         | -   | -   | 1   | -   | -   | -   | -   | -   | -   | -    | 3    | 3    |
| CO2          | To enable students to participate in Extempore            | -   | 2   | 3   | -   | 2   | -   | -   | -   | -   | 2    | -    | 2    |
| CO3          | To enable students to participate in Group Discussion     | -   | 3   | 3   | -   | -   | -   | -   | -   | -   | 3    | 1    | 3    |
| CO4          | To improve writing skills of students by Dialogue Writing | -   | 3   | 3   | -   | -   | 1   | -   | -   | 1   | 3    | 1    | 3    |
| CO5          | To improve writing skills of students by Dialogue Writing | -   | 2   | 3   | -   | 2   | -   | -   | -   | -   | 2    | 1    | 2    |

Subject/Code No: Manufacturing Practices Workshop &1/ 2FY3-25

LTP:0+0+3

Semester: I / II semester
Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                           | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand various tools, materials, instruments required for workshop operations.                                                                      | 1   | -   | 1   | 1   | 1   | -   | 1   | 1   | -   | 1    | 3    | 3    |
| CO2          | Apply techniques to perform workshop operations with hand tools and power tools such as center lathe machine, drilling machine using given job drawing. | 3   | 2   | 2   | ı   | 2   | ı   | ı   | ı   | 2   | ı    | ı    | 2    |
| CO3          | Understand application of the hand tools used in fitting, carpentry, foundry, welding shop, machine tools and sheet metal shop                          | 3   | 2   | 2   | -   | 2   | -   | -   | -   | -   | -    | -    | 2    |
| CO4          | Write a report related to hand tools and machine tools description referring to library books and laboratory manuals.                                   | 2   | 2   | -   | -   | 2   | -   | -   | -   | 2   | 3    | -    | 2    |
| CO5          | Apply safety consciousness along with team work.                                                                                                        | 2   | -   | -   | -   | -   | -   | -   | -   | 3   | 2    | -    | -    |

Subject/Code No: Computer Programming Lab &1/2FY3-23 LTP:0+0+3
Semester: I / II semester
Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                           | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand and describe the structure of a C program to explain, write, compile and execute programs using input and output statements. | 3   | 2   | 2   | 2   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO2          | Classify and write programs by applying the decision control statements and loop control statements using different operators.          | 3   | 3   | 2   | 3   | 1   | 1   | 1   | -   | 1   | 1    | 2    | -    |
| CO3          | Classify and write programs by applying the decision control statements and loop control statements using different operators.          | 2   | თ   | 2   | ı   | ı   | ı   | ı   | 1   | 2   | ı    | 2    | -    |
| CO4          | Design object-based programs by creating new data type using structure and union.                                                       | -   | 3   | 1   | 3   | 1   | -   | -   | -   | 3   | -    | 1    | -    |
| CO5          | Understand and use the concept of functions and file operations; moreover, design new functions to solve module driven problems.        | 2   | 2   | 2   | 3   | -   | -   | -   | -   | -   | -    | 2    | -    |

## Subject/Code No: Basic Civil Engineering Lab &1/2FY3-27 LTP: 0+0+2 Semester: I / II semester Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                 | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Describe various sanitary fittings and water supply fittings.                                 | -   | 1   | 1   | 1   | ı   | 2   | ı   | 2   | 3   | ı    | -    | 2    |
| CO2          | Examine pH, Turbidity, Hardness and Total solids of given water sample.                       | 1   | 1   | 1   | 1   | 1   | 2   | 3   | 2   | 1   | 2    | -    | 2    |
| CO3          | Use of EDM and Total Station in the field.                                                    | -   | -   | -   | -   | 1   | 2   | -   | 2   | ı   | ı    | -    | 3    |
| CO4          | Investigate the linear and angular measurements of the points on the ground and levelling.    | -   | 1   | 1   | 1   | 1   | 2   | 2   | 2   | 3   | 2    | -    | 2    |
| CO5          | Students will show an ability to communicate effectively and work as a team member ethically. | -   | -   | -   | -   | -   | 2   | 2   | 2   | 3   | 2    | -    | 2    |

## Subject/Code No: Basic Electrical Engineering Lab &1/2FY3-26 LTP: 0+0+2 Semester: I / II semester Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                                                                       | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Utilize a Cathode Ray Oscilloscope (CRO), along with various meters, to identify and observe the functioning of electronic components such as resistors, inductors, capacitors, diodes, diac, triac, transistors, and thyristors.                   | 3   | 3   | 3   | 1   | 1   | -   | 1   | -   | 1   | -    | 1    | 3    |
| CO2          | Measure the no-load current waveform using an oscilloscope and calculate transformer voltages, currents, power, and efficiency                                                                                                                      | 3   | 3   | 3   | ı   | ı   | -   | ı   | -   | ı   | -    | 1    | 3    |
| CO3          | Conduct various three-phase transformer connections to analyze voltage and current relationships, while recording phase shifts between the primary and secondary sides.                                                                             | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | 1    | 3    |
| CO4          | Recognize the operational characteristics, cut-out sections, and speed behavior of DC machines, synchronous machines, single-phase, and three-phase induction machines                                                                              | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | 3    |
| CO5          | Create a torque-speed curve for a separately excited DC motor, examine the operation of DC-DC converters, DC-AC converters, and DC-AC converters for induction motor speed control, while providing an overview of the components in LT switchgear. | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | 3    |



## Subject/Code No: Computer Aided Engineering Graphics & 1FY3-28 LTP:0+0+2 Semester: I semester Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                              | P01 | P02 | P03 | P04 | P05 | 90d | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Discuss the concept of engineering terminology, engineering scales and conic sections.                     | 2   | -   | -   | -   | 3   | 2   | -   | -   | 3   | 2    |      | 2    |
| CO2          | Apply the necessary skills in drawing and explaining orthographic projection of points, lines, and planes. | 2   | -   | 3   | -   | 3   | 2   | -   | -   | -   | -    | 1    | 3    |
| CO3          | Understand and Draw projections of solids                                                                  | 3   | 2   | 3   | 2   | 3   | -   | -   | -   | -   | -    | 1    | -    |
| CO4          | Draw and classify the sections of solids.                                                                  | 3   | 2   | 3   | 2   | 3   | -   | -   | -   | -   | -    | -    | -    |
| CO5          | Explain various commands and create drawing in AutoCAD.                                                    | 2   | -   | 3   | -   | 3   | -   | -   | -   | -   | -    | 1    | 2    |

Subject/Code No: Computer Aided Machine Drawing & 2FY3-29

LTP: 0+0+2

Semester: II semester

### **Course Outcome Mapping with Program Outcome**

| CO<br>Number | CO Definition                                                                                                                                        | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Recall and understand the conventional representation of machine components and material, types of lines & dimensioning.                             | 2   | -   | -   | -   | 3   | 2   | -   | -   | 3   | 2    | -    | 2    |
| CO2          | Explain concept of first and third angle projections and prepare drawing of simple machine elements, sectional views for various parts and assembly. | 2   | -   | 3   | -   | 3   | 2   | -   | -   | -   | -    | -    | 3    |
| CO3          | Draw and explain various types of temporary and permanent fasteners.                                                                                 | 3   | 2   | 3   | 2   | 3   | ı   | 1   | 1   | -   | -    | ı    | -    |
| CO4          | Draw free hand sketches of lines, materials and various components i.e. bearings, couplings, welded joints, pipe joints, valves etc.                 | 3   | 2   | 3   | 2   | 3   | 1   | -   | 1   | -   | -    | -    | -    |
| CO5          | Differentiate among the various commands and create 2D computer aided drawing software.                                                              | 2   | -   | 3   | -   | 3   | -   | -   | -   | -   | -    | -    | 2    |

### **Bachelor of Technology Computer Engineering**

**Program Name: Computer Engineering** 

Subject/Code No: Advanced Engineering Mathematics/3CS2-01 LTP:3L+0T+0P Semester: 3rd Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                     | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Recall and understand the fundamental concepts of probability and standard distributions which can describe real life phenomenon. | 3   | 3   |     | 2   | 1   | 1   | -   | 1   | 1   | 2    | 1    | 2    |
| CO2          | Analyze the various methods of numerical solutions of Normal, Poisson and Binomial probability distribution.                      | 3   | 3   | 2   | 2   | -   | 1   | -   | 1   | -   | 2    | -    | 2    |
| СОЗ          | Formulate the optimization problems in mathematical form with classification.                                                     | 3   | 3   | 3   | 3   | -   | -   | -   | 1   | ,   | 1    | ,    | 3    |
| CO4          | Interpret non-linear optimization problems and solve by appropriate methods.                                                      | 2   | 2   | 3   | 3   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO5          | Demonstrate linear optimization problems and solve by standard methods.                                                           | 3   | 3   | 3   | 3   | -   | -   | -   |     | -   | -    | -    | 3    |

Subject/Code No: Technical Communication/3CS1-02 LTP: 2L+0T+0P Semester: 3rd Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                             | P01 | P02 | F03 | P04 | 50d | 90d | 70d | 80d | 60d | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand the process of technical communication in terms of LSRW.                                       | 1   | 1   | 1   | 1   | 1   | 1   | ı   | ı   | 1   | 3    |      | 1    |
| CO2          | Apply the concept of Technical Materials/Texts in various technical documents.                            | -   | -   | -   | -   | -   | -   | -   | -   | 1   | 3    |      | 1    |
| CO3          | Enhance the skills in the process of technical communication in terms of LSRW.                            | -   | -   | -   | -   | -   | -   | -   | -   | 1   | 3    |      | 1    |
| CO4          | Implement the basic concepts of technical communication in Technical Reports, articles and their formats. | -   | -   | -   | -   | -   | -   | -   | -   | -   | 3    |      | 2    |

### Subject/Code No: Digital Electronics/3CS3-04 LTP: 3L+0T+0P Semester: 3rd Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                                   | P01 | P02 | P03 | P04 | PO5 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Demonstrate basic principles of digital circuits and different number systems                                                                                                                                   | 3   | 3   | 3   | 2   | 1   | -   | -   | -   | -   | -    | -    | 1    |
| CO2          | Distinguish logic expressions and circuits using Boolean laws and K-map                                                                                                                                         | 3   | 3   | 2   | 2   | 1   | -   | -   | -   | -   | -    | 1    | 1    |
| CO3          | Differentiate types of digital electronic circuits and also the different logic families involved in the digital system to prepare the most simplified circuits using various mapping and mathematical methods. | 3   | 3   | 3   | 1   | 1   | 1   | -   | -   | -   | -    | -    | 1    |
| CO4          | Design various types of memoryless element digital electronic circuits for particular operation within the realm of economic, performance, efficiency, user friendly and environmental constraints.             | 3   | 3   | 3   | 1   | 1   | 1   | -   | -   | -   | -    | -    | 1    |
| CO5          | Design various types of memory element digital electronic circuits for particular operation within the realm of economic, performance, efficiency, user friendly and environmental constraints.                 | 3   | 3   | 3   | 1   | 1   | 1   | -   | -   | -   | -    | -    | 1    |

Subject/Code No: Data Structures and Algorithms/3CS4-05 LTP: 3L+0T+0P Semester: 3rd Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                        | PO1 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Recognize fundamental Stack operations to address a range of engineering problems.                   | 3   | 2   | 2   | 2   | 2   |     | 1   | 1   | 1   | ı    | ı    | -    |
| CO2          | Relate the principles of Queues and Linked Lists to offer solutions for computer-based issues.       | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | ı    | 1    | 1    |
| CO3          | Discover different Search and Sorting methods to rationalize their application in diverse scenarios. | 2   | 2   | 2   | 2   | 2   | 2   | 1   |     | 1   | -    | 1    | 1    |
| CO4          | Practice the concept of Trees and their operations to furnish valid solutions.                       | 2   | 2   | 2   | 1   | 1   | 2   | 1   | -   | -   | -    | -    | 1    |
| CO5          | Compare a variety of techniques that can be employed with Graphs and Hashing.                        | 2   | 2   | 2   | 2   | 1   | 1   | -   | -   | 1   | -    | -    | 1    |

#### Subject/Code No: Object Oriented Programming/3CS4-06 LTP: 3L+0T+0P Semester: 3rd Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                              | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|--------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Describe the Object-Oriented Programming paradigm with the concept of objects and classes. | 3   | 2   | 2   | 2   | 2   | -   | -   | -   | ı   | -    | -    | -    |
| CO2          | Explain the memory management techniques using constructors, destructors and pointers      | 2   | 2   | 2   | 2   | 2   | -   | -   | -   | 1   | -    | -    | -    |
| CO3          | Classify and demonstrate the various Inheritance techniques.                               | 3   | 3   | 2   | 2   | 2   | -   | 1   | -   | ı   | ı    | ı    | -    |
| CO4          | Understand how to apply polymorphism techniques on the object-oriented problem.            | 3   | 3   | 2   | 2   | 2   | -   | -   | -   | 1   | •    | -    | -    |
| CO5          | Understand how to apply polymorphism techniques on the object-oriented problem.            | 3   | 3   | 2   | 2   | 2   | -   | -   | -   | -   | -    | -    | -    |

Subject/Code No: Software Engineering/3CS4-07 LTP: 3L+0T+0P Semester: 3rd Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                        | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Recognize different software life cycle models and testing techniques to develop real time projects. | 2   | 3   | 1   | -   | -   | -   | -   | 1   | 2   | ı    | 1    | 1    |
| CO2          | Identify cost estimation and risk analysis in project management.                                    | 1   | 2   | 1   | ı   | 2   | 1   | 1   | 1   | 1   | 1    | 2    | 1    |
| CO3          | Interpret and deduce the engineering process of software requirement analysis.                       | 1   | 2   | ı   | ı   | ı   | 2   | 1   | 1   | 1   | ı    | 1    | 1    |
| CO4          | Apply procedural design methods to architect software systems.                                       | -   | ı   | 3   | 2   | 1   | ı   | 1   | ı   |     | 1    | 1    | 1    |
| CO5          | Collaborate the concept of object-oriented analysis and design in software development process.      | -   | -   | 3   | 2   |     | -   | -   | 1   | 2   |      | 1    | 1    |

Subject/Code No: Data Structures and Algorithms Lab/3CS4-21 LTP: 0L+0T+3P Semester: 3rd Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                               | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|-------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Recognize fundamental Stack and Queue operations to address a range of engineering problems.                | 3   | 3   | 3   | 1   | 1   | ı   | ı   | -   | -   | ı    | ı    | 1    |
| CO2          | Relate the principles of Linked Lists to offer solutions for computer-based issues.                         | 3   | 3   | 3   | 3   | 1   | -   | -   | -   | -   | 1    | -    | -    |
| CO3          | Discover different Search and Sorting methods to rationalize their application in diverse scenarios.        | 3   | 2   | 2   | 3   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO4          | Devise diverse operations on non-linear data structures such as trees and graphs.                           | 3   | 3   | 2   | 2   | -   | ı   | 1   | -   | -   | ı    | ı    | -    |
| CO5          | Propose a solution for a provided engineering problem utilizing Stack, Queue, Linked List, Tree and Sorting | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | -    |

#### Subject/Code No: Object Oriented Programming Lab/3CS4-22 LTP: 0L+0T+3P Semester: 3rd Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                            | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|--------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Create and explain Basic C++ Program using i/o variables and structures. | 3   | 2   | -   | 1   | 2   | 1   | 1   | -   | 1   | ı    | ı    | -    |
| CO2          | Apply object-oriented programming concepts using class and objects       | 3   | 3   | 2   | ı   | 3   | ı   | 1   | -   | ı   | ı    | ı    | -    |
| CO3          | Design and assess the classes for code reuse                             | 3   | 3   | 2   | -   | 3   | -   | -   | -   | -   | -    | -    | -    |
| CO4          | Analysis and apply the generic classes concepts in programming problem   | 3   | 2   | 2   | -   | 3   | -   | -   | -   | -   | -    | -    | -    |
| CO5          | Illustrate and evaluate the file Input Output mechanisms                 | 3   | 2   | 2   | 2   | 3   | -   | -   | -   | -   | 1    | -    | -    |

Subject/Code No: Software Engineering Lab/3CS4-23 LTP: 0L+0T+3P Semester: 3rd Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                 | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Observe the requirements specification, function-<br>oriented design using Software Analysis and<br>Software Design of given project and relate the use<br>of | 3   | 2   | 1   | -   | 1   | 1   | 1   | -   | 1   | 1    | 1    | -    |
| CO2          | appropriate CASE tools and other tools in the software life cycle.                                                                                            |     |     |     |     |     |     |     |     |     |      |      |      |
| CO3          | Translate Software Requirements Specification (SRS) for a given problem in IEEE template.                                                                     | 2   | 2   | -   | -   | -   | -   | -   | -   | 2   | 2    | 2    | 2    |
| CO4          | Select DFD model (level-0, level-1 DFD and Data dictionary) of the project.                                                                                   | 2   | 2   | 2   | ı   | 1   | 1   | ı   | -   | ı   | 1    | 1    | -    |
| CO5          | Prepare all Structure and Behavior UML diagram of the given project.                                                                                          | -   | 2   | 2   | 2   | 2   | -   | •   | -   | -   | -    | -    | -    |

Subject/Code No: Digital Electronics Lab/3CS4-24 LTP: 0L+0T+3P Semester: 3rd Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                   | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Demonstrate the basics of logic gates                                                                           | 2   | 2   | 2   | -   | -   | -   | -   | -   | 2   | 2    | -    | 2    |
| CO2          | Demonstrate basic combinational circuits and verify their functionalities                                       | 3   | 2   | 2   | 1   | 2   | ı   | ı   | 1   | 2   | 2    | ı    | 2    |
| СОЗ          | Apply the working mechanism and design guidelines of different sequential circuits in the digital system design | 2   | 2   | 3   | -   | 2   | 1   | 1   | -   | 2   | 2    | 1    | 2    |
| CO4          | Construct different types of counter for real time digital systems                                              | 2   | 2   | 3   | 1   | 2   | ı   | ı   | 1   | 2   | 2    | ı    | 2    |
| CO5          | Distinguish the different types of shift registers                                                              | 2   | 2   | 2   | -   | 2   | •   | -   | -   | 2   | 2    | •    | 2    |

#### Subject/Code No: Discrete Mathematics Structure/4CS2-01 LTP: 3L+0T+0P Semester: 4th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                       | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Describe basic concept of Sets, Relations, Functions and Discrete Structure and apply appropriate methods to solve the problems.                    | 2   | 2   | 3   | 3   | -   | -   | -   | -   | -   | -    | -    | 3    |
| CO2          | Describe the concept of mathematical logic to create the problem in appropriate form and test for validity of the problem.                          | 2   | 2   | 3   | 2   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO3          | Apply fundamental mathematical concepts such as sets, relations, Combinatorics technique to formulate the problems and solve by appropriate method. | 3   | 2   | 2   | 2   | -   | -   | -   | ı   | ı   | ı    | ı    | 2    |
| CO4          | Interpret the concept of groups, ring and field to analyze the complex problems.                                                                    | 3   | 3   | 3   |     | -   | -   | -   | -   | -   | -    | -    | 3    |
| CO5          | Demonstrate the model of real-world problems using concept of Graph and solve the problems by standard result and graph algorithms.                 | 3   | 3   | 3   | 3   | -   | -   | -   | -   | -   | -    | -    | 3    |

Subject/Code No: Managerial Economics and Financial Accounting/4CS1-03 LTP: 2L+0T+0P Semester: 4th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                               | P01 | P02 | P03 | P04 | P05 | P06 | P07 | PO8 | P09 | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Recognize and describe the fundamental concepts of Economics and Financial Management and define the meaning of national income, demand, supply, cost, market structure, and balance sheet. | 1   | 3   | 1   | 3   | 1   | 2   | 2   | 1   | 1   | 1    | ı    | 2    |
| CO2          | Calculate and classify the domestic product, national product and elasticity of price on demand and supply.                                                                                 | -   | 1   | 3   | 2   | -   | 1   | 1   | 1   | -   | 1    | 2    | 2    |
| CO3          | Draw the cost graphs, revenue graphs and forecast the impact of change in price in various perfect as well as imperfect market structures.                                                  | -   | 1   | 3   | 2   | -   | 1   | ı   | 1   | 1   | -    | 2    | 1    |
| CO4          | Compare the financial statements to interpret the financial position of the firm and evaluate the project investment decisions.                                                             | -   | 3   | 3   | 3   | -   | -   | -   | -   | 1   | -    | 3    | 1    |

### Subject/Code No: Microprocessor & Interfaces/4CS3-04 LTP: 3L+0T+0P Semester: 4th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                        | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Classify the basic operations of Microprocessor and microcontroller using their pin and architectural diagram, and also about area of manufacturing and performance. | 3   | 3   | 2   | 2   | 3   | -   | -   | -   | -   | 1    | -    | -    |
| CO2          | Practice of Knowledge about programming proficiency, using various addressing modes and data transfer instructions of microprocessor and microcontroller.            | 3   | 2   | 2   |     | 3   | -   | -   | -   | 1   | 1    | 1    | 2    |
| CO3          | Evaluate the measures of Assembly Language Programming.                                                                                                              | 3   | 3   | 2   | 2   | 2   | -   | -   | -   | -   | 1    | -    | -    |
| CO4          | Discriminate the interfacing of various circuits with microprocessor.                                                                                                | 3   | 3   | 3   | 1   | 2   | -   | -   | -   | ı   | ı    | ı    | -    |
| CO5          | Compare the different programming logic applications with 8085 microprocessors.                                                                                      | 3   | 3   | 2   | 2   | 2   | -   | -   | -   | -   | -    | -    | -    |

Subject/Code No: Database Management System/4CS4-05 LTP: 3L+0T+0P Semester: 4th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                 | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Tabulate Database System with the help of Entity Relationship Diagram that visualizes a database system implemented in a real-world scenario. | 3   | 2   | 2   | -   | 1   | -   | -   | 1   | ,   | 1    | 2    | -    |
| CO2          | Apply data deduction and manipulation techniques using query languages on a variety of databases.                                             | 3   | 2   | 3   | -   | 3   | -   | -   | -   | -   | -    | -    | -    |
| CO3          | Use normal forms in the process of enhancing the database schema through refinement techniques.                                               | 3   | 2   | -   | 3   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO4          | Create transaction plans incorporating diverse scheduling types.                                                                              | 2   | 2   | 1   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO5          | Generalize and assess the effectiveness of concurrency control mechanisms and recovery systems.                                               | 3   | 3   | 2   | -   | -   | -   | -   | -   | -   | -    | 1    | -    |

## Subject/Code No: Theory of Computation/4CS4-06: LTP: 3L+0T+0P Semester: 4th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                       | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Apply the knowledge of different types of grammar; he/she can analyze the all types of grammar and evaluate the relationship among them.                                            | 3   | 2   | -   | 1   | 2   | -   | -   | 1   | 1   | 2    | -    | 2    |
| CO2          | Differentiate the concept of regular expression and finite automaton and apply the knowledge to compare the procedure for writing regular expression for an automaton or vice versa | 2   | 2   | ı   | -   | 1   | ı   | ı   | 1   | 2   | 2    | ı    | 2    |
| CO3          | Apply the knowledge of Context Free grammar; he/she can generate the Context free grammar and Pushdown Automaton for evaluating the CFG.                                            | 3   | 3   | ı   | 1   | 2   | ı   | ı   | 1   | 1   | 2    | ı    | 2    |
| CO4          | Apply the knowledge of Turing Machine he/she can analyze the Type-0 grammar and can design and evaluate the Turing Machine                                                          | 3   | 3   | ,   | ,   | 1   | 1   | - 1 | -   | ı   | 2    | -    | 2    |
| CO5          | Apply the knowledge of Pumping Lemma Theorem students can check whether the given grammar Regular grammar/Context Free Grammar or not                                               | 3   | 2   | -   | -   | 1   | -   | -   | -   | -   | 2    | -    | 2    |

## Subject/Code No: Data Communication and Computer Networks/4CS4-07 LTP: 3L+0T+0P Semester: 4th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                            | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Able to identify the principles of layered protocol architecture; be able to recognize and generalize the system functions in the correct protocol layer and further illustrate how the layers interact. | 2   | 2   | 1   | -   | -   | 2   | 1   | 1   | 2   | 1    | ı    | 1    |
| CO2          | State and cite mathematical problems for data-link and network protocols.                                                                                                                                | 1   | 2   | 1   | 2   | 1   | 2   | 1   | ı   | 1   | 1    | ı    | 2    |
| CO3          | Use network layer protocols and calculate number of subnets required for a network.                                                                                                                      | 3   | 2   | 2   | 1   | 2   | 1   | 2   | 1   | 1   |      | ı    | 1    |
| CO4          | Compute the reliability of data transfer over transport layer by glossy channel bit errors problem.                                                                                                      | 2   | -   | 1   | -   | -   | 2   | 1   |     | -   | -    | -    | 1    |
| CO5          | Select and plan for common services, system services, such as name and address lookups, and communications applications.                                                                                 | 2   | -   | -   | -   | -   | 1   | 1   | 1   |     |      | 1    | 1    |

#### Subject/Code No: Microprocessor & Interfaces Lab/4CS4-21 LTP: 0L+0T+2P Semester: 4th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                  | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Analyze the fundamentals of assembly level programming                                                                         | 3   | 2   | 2   | 1   | 2   | 1   | 1   | 1   | 1   | 1    | 1    | 2    |
| CO2          | Apply interfacing concept between input and output devices.                                                                    | 3   | 3   | 3   | ,   |     | -   | 1   | -   | 1   | -    | ,    | -    |
| CO3          | Elaborate the interfacing of various other devices with microprocessor.                                                        | 3   | 3   | -   |     |     | -   |     | -   | -   | -    |      | -    |
| CO4          | Compose the various programs on different problems using Assembly Language Programming.                                        | 3   | 3   | 3   | ,   |     | -   | ,   | -   | 1   | -    | ,    | 3    |
| CO5          | Implement standard microprocessor real time interfaces including digital-to-analog converters and analog-to-digital converters | 3   | 3   | -   | 1   |     | 1   | -   | -   | -   | -    | 1    | -    |

Subject/Code No: Database Management System Lab/4CS4-22 LTP: 0L+0T+3P Semester: 4th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                           | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|-------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Create and execute a database schema for a specified problem domain                                                     | 3   | 2   | 2   | -   | 1   | 1   | 1   | -   | 1   | 1    | 1    | -    |
| CO2          | Manage integrity constraints within a database using a relational database management system (RDBMS),                   | 3   | 2   | 2   | -   | -   | -   | -   | 1   | -   | 1    | ,    | -    |
| CO3          | Construct and devise a graphical user interface (GUI) application using a fourth-generation programming language (3GL). | 3   | 2   | 2   | -   | -   | -   | -   | -   | 2   | 1    | 1    | -    |
| CO4          | Composing PL/SQL code encompassing stored procedures, stored functions, cursors, and packages.                          | 3   | -   | -   | -   | 3   | 1   | 1   | -   | -   | 1    | 1    | -    |
| CO5          | Produce SQL and Procedural interfaces to SQL comprehensively.                                                           | 3   | 2   | -   | -   | 1   | 1   | 1   | -   | 2   | 1    | 1    | -    |

Subject/Code No: Network Programming Lab/4CS4-23 LTP: 0L+0T+3P Semester: 4th Course Outcome Mapping with Program Outcome

|              | Course Gatesine mapping                                                                         |     |     | ,. • |     | •   |     |     |     |     |      |      |      |
|--------------|-------------------------------------------------------------------------------------------------|-----|-----|------|-----|-----|-----|-----|-----|-----|------|------|------|
| CO<br>Number | CO Definition                                                                                   | P04 | P02 | P03  | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
| CO1          | Identify the functioning of various networking equipment's                                      | 2   | -   | -    | -   | -   | 2   | 1   | 1   | 1   | 1    | 2    | 2    |
| CO2          | Illustrate the LAN Installation techniques and Configurations techniques                        | 2   | 2   | -    | -   | 2   | Ī   | ı   | 1   | ı   | ı    | 2    | -    |
| CO3          | Solving various Error correcting techniques and framing methods                                 | 1   | 1   | 1    | 1   | -   | -   | -   | -   | 1   | 1    | 1    | -    |
| CO4          | Practice the programs for client and server involving UDP/TCP sockets using socket programming. | 2   | 2   | 2    | -   | -   | -   | -   | -   |     | -    | 1    | 2    |
| CO5          | Estimate the communication between client and server using Network Simulator.                   | 3   | 3   | -    | -   | -   | ı   | -   | -   | -   | •    | -    | -    |

#### Subject/Code No: Linux Shell Programming Lab/4CS4-24 LTP: 0L+0T+2P Semester: 4th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                             | P01 | P02 | P03 | P04 | P05 | 90d | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Summarize the concepts and commands in UNIX.                                                              | 3   | 3   | 3   | -   | -   | -   | ı   | -   | 3   | 1    | -    | -    |
| CO2          | Construct the directory layout of a typical UNIX system, maintain, and secure UNIX directories and files. | 3   | 3   | 3   | 3   | 1   | 1   | 1   | -   | 1   | 1    | -    | -    |
| CO3          | Illustrate the knowledge to use the several shell quoting mechanisms correctly.                           | 2   | 2   | 3   | 2   | 1   | 1   | ı   | -   | ı   | ı    | -    | -    |
| CO4          | Construct regular expression using filters and various commands to express the patterns.                  | 2   | 2   | 3   | 2   | 2   | -   | -   | -   | -   | •    | -    | -    |
| CO5          | Write simple scripts to develop basic command output                                                      | 3   | 3   | 3   | 3   | -   | -   | -   | -   | 1   | 1    | -    | _    |

Subject/Code No: Java Lab/4CS4-25 LTP: 0L+0T+2P Semester: 4th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                              | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Express and restate fundamentals of java, and tools for program designing environments.                                                                    | 3   | -   | 3   | -   | 3   | -   | -   | -   | -   | -    | ı    | -    |
| CO2          | Construct classes and implement the principles of method overloading, inheritance, and access controls within those classes.                               | 2   | 3   | 2   | 2   | 2   | 1   | -   | -   | 1   | 1    | 1    | -    |
| CO3          | Develop Java packages and incorporate the concept of interfaces, along with importing these packages in Java.                                              | 2   | 3   | 3   | 1   | 2   | -   | -   | -   | -   | -    | ,    | _    |
| CO4          | Formulate the application by managing file operations, handling exceptions, and implementing threads.                                                      | ı   | 3   | 3   | ı   | 3   | ı   | 1   | 1   | ı   | ı    | ı    | -    |
| CO5          | Create applications utilizing Java applets and design various polygons. This task involves the application of knowledge and the synthesis of design skills | -   | 3   | 3   | -   | 3   | -   | -   | -   | -   | -    | -    | -    |

Subject/Code No: Information Theory & Coding/5CS3-01 LTP: 2L+0T+0P Semester: 5th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                           | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Solve the theory algebra and linear algebra in source coding            | 3   | 1   | 3   | 3   | 3   | ı   | 1   | ı   | ı   | ı    |      | -    |
| CO2          | Create channel performance using information theory                     | 3   | 3   | 2   | 2   | 2   | -   | -   | -   | -   | -    | -    | -    |
| CO3          | Manipulate linear block codes for error detection and error correction. | 2   | 3   | 2   | 3   | 3   | ı   | 1   | ı   | 1   | ı    |      | -    |
| CO4          | Modify Cyclic codes for error detection and error correction.           | 3   | 1   | 3   | 3   | 3   | -   | -   | -   | -   | -    | -    | -    |
| CO5          | Discover convolution codes for performance analysis.                    | 2   | 1   | 1   | 2   | 2   | -   | -   | -   | -   | -    | -    | -    |

### Subject/Code No: Compiler Design/5CS4-02 LTP: 3L+0T+0P Semester: 5th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                     | P01 | P02 | PO3 | P04 | PO5 | P06 | P07 | PO8 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Illustrate the different phases of compiler to understand it's working.           | 3   | 3   | 3   | 1   | 1   | ı   | 1   | -   | 1   | ı    | ı    | 1    |
| CO2          | Use and execute different types of parsing algorithm                              | 1   | 2   | 3   | 1   | 1   | 1   | -   | -   | 1   | 1    | 1    | 1    |
| CO3          | Distinguish different types of Intermediate code generations.                     | 1   | 2   | 3   | 2   | 1   | 1   | 1   | -   | -   | -    | 1    | -    |
| CO4          | Summarize different types of storage organization techniques.                     | 1   | 3   | 3   | 1   | -   | -   | 1   | -   | ,   | 1    | 1    | -    |
| CO5          | Dissect the issues in code generator's design and basic block control flow graph. | 1   | 3   | 3   | 1   | 3   | -   | -   | -   | -   | -    | -    | 1    |

### Subject/Code No: Operating Systems/5CS4-03 LTP: 3L+0T+0P Semester: 5th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                             | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Analyze the concept of Operating Systems, including their essential significance and fundamental operational processes.                                                   | 3   | 2   | 2   | 2   | -   | -   | -   | -   | -   | 1    | -    | 1    |
| CO2          | Utilize process scheduling techniques and inter-<br>process communication strategies to evaluate their<br>effectiveness in resolving real-world classical<br>problems     | 3   | 3   | 1   | 2   | 1   | ı   | 1   | 1   | 1   | 1    | 2    | 1    |
| CO3          | Analyzing Memory Management Techniques and Page Replacement Algorithms leads to the formulation of Free Space Management with the concept of virtual memory.              | 3   | 2   | 2   | 2   | 2   | 1   | 1   | -   | 1   | -    | 2    | -    |
| CO4          | Evaluate Memory Management Techniques and Page Replacement Algorithms to formulate Free Space Management, integrating virtual memory, and showcasing critical assessment. | 3   | 1   | 1   | 1   | 1   | 1   | 1   | -   | 1   | -    | 1    | -    |
| CO5          | Illustrate understanding of File Systems, Input / Output Systems, and diverse disk scheduling algorithms through case studies                                             | 1   | 2   | 1   | 2   | 1   | 1   |     | 1   |     | 1    | 2    | -    |

Subject/Code No: Computer Graphics & Multimedia/5CS4-04 LTP: 3L+0T+0P Semester: 5th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                           | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand and apply basics about computer graphics along with graphics standards.                                                      | 3   | 3   | 2   | 2   | 1   | ı   | -   | -   | ı   | ı    | ı    | -    |
| CO2          | Explain and analyses various algorithms to scan, convert the basic geometrical primitives, Area filling.                                | 3   | 3   | 2   | 1   | -   | -   | -   | -   | ı   | -    | -    | -    |
| CO3          | Explain, illustrate and design various algorithms for 2D transformations and clipping.                                                  | 3   | 3   | 2   | 1   | -   | -   | -   | -   | 1   | -    | -    | -    |
| CO4          | Understand various color models in computer graphics system and develop animated motions through                                        | 3   | 3   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO5          | To understand the fundamentals concepts of parallel and perspective projections and evaluate various algorithms for 3D transformations. | 3   | 3   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | -    |

Subject/Code No: Analysis of Algorithm/5CS4-05 LTP: 3L+0T+0P Semester: 5th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                       | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|-----------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Observe the accuracy and efficiency of the algorithm.                                               | 3   | 2   | 2   | 2   | 1   | 1   | 1   | -   | 2   | -    | -    | -    |
| CO2          | Associate Dynamic Programming to address real-time challenges.                                      | 1   | 2   | 1   | 1   | 1   | 2   | 1   | -   | 1   | 1    | ı    | 1    |
| CO3          | Construct and practice different pattern matching algorithms and the assignment problem.            | 2   | 2   | 1   | 1   | 2   | 1   | 1   | -   | 1   | -    | 1    | 1    |
| CO4          | Estimate the effectiveness of randomized algorithms through Min-Cut, 2-SAT, and similar techniques. | 2   | 2   | 2   | 2   | 2   | -   | 1   |     | 1   | -    | -    | -    |
| CO5          | Anticipate algorithmic tendencies and the notion of diverse algorithm categories.                   | 3   | 2   | 3   | 2   | 3   | -   | -   | -   | -   | -    | -    | -    |

Subject/Code No: Wireless Communication (Elective)/5CS5-11

LTP: 2L+0T+0P Semester: 5th
Course Outcome Mapping with Program Outcome

|              | Course Outcome mapping                                                                                  | WILLI | 1 100 | ji aiii | Outo | OIIIC |     |     |     |     |      |      |      |
|--------------|---------------------------------------------------------------------------------------------------------|-------|-------|---------|------|-------|-----|-----|-----|-----|------|------|------|
| CO<br>Number | CO Definition                                                                                           | P01   | P02   | PO3     | P04  | P05   | 90d | P07 | 80d | 60d | PO10 | P011 | P012 |
| CO1          | Recognizing Mobile Radio Propagation, Fading, Diversity Concepts and Channel Modeling.                  | 2     | 3     | 3       |      | 2     |     |     |     |     |      |      | 2    |
| CO2          | Relate the concept of cellular system and their technical challenges.                                   | 3     | 3     | 3       | 3    |       |     |     |     |     |      |      | 3    |
| CO3          | Correlate the Digital Signaling concept with fading channels.                                           | 3     | 3     | 3       |      | 3     |     |     |     |     |      |      |      |
| CO4          | Estimate the equalization techniques in wireless communication and error probability in faded channels. | 3     | 3     | 3       |      |       |     |     |     |     |      |      |      |
| CO5          | Summarize the impacts of Design Parameters, Beam Forming and MIMO Systems in wireless communication.    | 3     | 3     | თ       |      | 3     |     |     |     |     |      |      |      |

## Subject/Code No: Computer Graphics & Multimedia Techniques Lab/5CS4-21 LTP: \_0L+0T+2P Semester: 5th

**Course Outcome Mapping with Program Outcome** 

| CO<br>Number | CO Definition                                                                                                                     | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand and apply the various predefined functions for drawing various geometric shapes                                        | 3   | 2   | 2   |     | 2   |     |     |     |     |      |      |      |
| CO2          | Explain and analyze various algorithms to scan, convert the basic geometrical primitives, transformations, Area filling, clipping | 3   | 2   | 2   |     | 2   |     |     |     |     |      |      |      |
| CO3          | Explain, illustrate and design various kinds of viewing and Projections.                                                          | 3   | 3   | 3   |     |     |     |     |     |     |      |      |      |
| CO4          | Explain, illustrate and design various kinds of clipping techniques                                                               | 3   | 3   | 3   |     |     |     |     |     |     |      |      |      |
| CO5          | Define, explain and apply various concepts associated with computer graphics to develop the animated game                         | 3   | 3   | 3   |     |     |     |     |     |     |      |      |      |

Subject/Code No: Compiler Design Lab/5CS4-22 LTP: 0L+0T+2P Semester: 5th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                      | P01 | P02 | PO3 | P04 | P05 | 90d | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Recognize the various forms of tokens and lexemes                                  | 3   | 3   | 3   |     |     |     |     |     | 3   |      |      |      |
| CO2          | Calculate scanning by using the concept of finite state automation, parse          | 2   | 2   | 3   |     | 2   |     |     |     | 2   |      |      |      |
| CO3          | Arrange intermediate code for various statements in a programming language concept | 3   | 3   | 3   |     |     |     |     |     | 3   |      |      |      |
| CO4          | Organize the storage for heap structure                                            | 3   | 3   | 3   | 3   |     |     |     |     |     |      |      |      |
| CO5          | Construct various language patterns using flex tools they are also able to parse.  | 2   | 2   | 3   | 2   |     |     |     |     | 2   |      |      |      |

Subject/Code No: Analysis of Algorithm Lab/5CS4-23 LTP: 0L+0T+2P Semester: 5th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                             | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Observe the complexity of fundamental algorithms.         | 3   | 3   | 2   | 2   |     |     |     |     |     |      |      |      |
| CO2          | Relate sorting algorithms in real-world scenarios.        | 3   | 2   | 3   | 2   |     |     |     |     |     |      |      |      |
| CO3          | Construct a binary search tree using assorted algorithms. | 3   | 3   |     | 3   |     |     |     |     |     |      |      |      |
| CO4          | Test algorithms for finding minimum spanning trees.       | 3   |     | 3   |     |     |     |     |     |     |      |      |      |
| CO5          | Appraise algorithms for pattern matching.                 | 3   |     | 3   | 3   |     |     |     |     |     |      |      |      |

Subject/Code No: Advance Java Lab/5CS4-24 LTP: L+0T+2P Semester: 5th Course Outcome Mapping with Program Outcome

|              |                                                                                                                                                |     |     |     |     |     |     |     |     |     | _    |      |      |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO<br>Number | CO Definition                                                                                                                                  | P01 | P02 | P03 | P04 | P05 | P06 | 70d | P08 | 60d | PO10 | P011 | P012 |
| CO1          | Recognize the foundational principles of Java programming and identify tools used in program design environments.                              | 3   |     | 3   |     |     |     |     |     |     |      |      |      |
| CO2          | Utilize the principles of overloading, inheritance, and access controls in the context of class structures.                                    | 3   |     |     |     |     |     |     |     |     |      |      |      |
| CO3          | Implement the concept of interfaces and demonstrate the process of importing packages in Java.                                                 | 3   |     |     |     | 3   |     |     |     |     |      |      |      |
| CO4          | Formulate application designs incorporating file handling, exception management, and multithreading.                                           | 3   |     | 3   |     |     |     |     |     |     |      |      |      |
| CO5          | Construct applications through the utilization of applets, and create intricate polygon designs, demonstrating creative and evaluative skills. | 3   | 2   | 2   |     |     |     |     |     |     |      |      |      |

Subject/Code No: Digital Image Processing/6CS3-01 LTP: 2L+0T+0P Semester: 6th

**Course Outcome Mapping with Program Outcome** 

| CO<br>Number | CO Definition                                                                                | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|----------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Illustrate the fundamental concepts of Digital Image Processing System                       | 3   | 3   | 3   |     | 2   |     |     |     |     |      |      | 2    |
| CO2          | Demonstrate various transformations and filtering techniques on Images in different domains. | 3   | 3   | 2   | 2   | 1   |     |     |     |     |      |      | 1    |
| CO3          | Distinguish the causes for image degradation and compare the image restoration techniques.   | 3   | 3   | 3   | 1   | 1   |     |     |     |     |      |      | 1    |
| CO4          | Distinguish various image compression and segmentation techniques.                           | 3   | 3   | 3   | 1   | 1   |     |     |     |     |      |      | 1    |
| CO5          | Categorize different image segmentation and representation algorithms and techniques         | 3   | 3   | 2   | 2   | 2   |     |     |     |     |      |      | 2    |

Subject/Code No: Machine Learning/6CS4-02 LTP: 3L+0T+0P Semester: 6th Course Outcome Mapping with Program Outcome

|              | Course Outcome Mapping                                                                                           | WILLI | 1 109 | Iaiii | Outo | JIIIC |     |     |     |     |      |      |      |
|--------------|------------------------------------------------------------------------------------------------------------------|-------|-------|-------|------|-------|-----|-----|-----|-----|------|------|------|
| CO<br>Number | CO Definition                                                                                                    | P01   | P02   | PO3   | P04  | P05   | 90d | P07 | 80d | 60d | PO10 | P011 | P012 |
| CO1          | Apply supervised machine learning algorithms to real-time data to generate predictive insights.                  | 3     | 2     | 3     | 1    | 3     |     |     |     |     |      |      | 1    |
| CO2          | Analyze real-world data with unsupervised machine learning algorithms to identify patterns and make predictions. | 3     | 2     | 3     | 1    | 3     |     |     |     |     |      |      | 1    |
| CO3          | Evaluate different feature extraction and selection methods.                                                     | 3     | 2     | 2     | 1    | 3     |     |     |     |     |      |      |      |
| CO4          | Identify the different types of semi supervised learning and reinforcement learning algorithms.                  | 3     | 2     | 3     | 1    | 3     |     |     |     |     |      |      | 1    |
| CO5          | Develop and implement recommender systems and deep learning models to make predictions and recommendations.      | 3     | 2     | 2     |      | 3     |     |     |     |     |      |      | 1    |

### Subject/Code No: Information Security System/6CS4-03 LTP: 2L+0T+0P Semester: 6th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                      | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Identify services that enhance the security and its mechanism.                                                                                                     | 3   | 1   | 1   |     | 1   |     | 1   |     | 1   |      |      | 1    |
| CO2          | Classify security attacks on information over network.  Describe and apply classical encryption techniques.                                                        | 2   | 2   | 1   | 2   | 1   | 1   |     |     |     |      |      | 2    |
| CO3          | Compare conventional encryption algorithms & public key cryptography, and design Encryption algorithm to provide the Integration and confidentiality of a message. | 3   | 1   | 3   | 1   | 1   |     |     | 1   |     |      |      | 3    |
| CO4          | Understand the concept of hash function with application and message authentication code in security system                                                        | 3   | 2   |     | 2   | 2   |     |     |     |     |      |      | 3    |
| CO5          | Classify key management schemes and discuss web security and transport level security protocols.                                                                   | 3   | 2   | 2   |     |     | 2   |     |     |     |      |      | 3    |

### Subject/Code No: Computer Architecture and Organization/6CS4-03 LTP: 3L+0T+0P Semester: 6th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                       | PO1 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Implement register transfer with the help of micro-operations.                      | 2   | 3   | 3   |     |     |     |     |     |     |      |      | 1    |
| CO2          | Analyze basic of computer organization, instructions, RISC& CISC characteristics.   | 3   | 1   | 2   |     |     |     |     |     |     |      |      | 1    |
| CO3          | Apply integer and floating type computer arithmetic techniques.                     | 2   | 2   | 2   | 2   |     |     |     |     |     |      |      |      |
| CO4          | Analyze basics of memory organization, allocation and management schemes.           | 2   | 3   | 3   | 1   |     |     |     |     |     |      |      | 1    |
| CO5          | Assess modes of transfer and input output interface, interrupts and DMA processing. | 2   | 2   | 2   | 2   |     |     |     |     |     |      |      | 1    |

### Subject/Code No: Artificial Intelligence/6CS4-05 LTP: 2L+0T+0P Semester:6th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                               | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Recall and identify distinct approaches in AI, with a specific emphasis on significant techniques such as search algorithms, knowledge representation, planning, and constraint management. | 3   | 1   | 2   | 2   | 1   |     | 1   |     |     |      |      | 1    |
| CO2          | Elaborate on the current outlook of Al as the examination of agents that receive percepts from the environment and carry out actions in response.                                           | 3   | 3   |     | 3   | 1   |     |     |     |     |      |      |      |
| CO3          | Experimenting with the recognition of significant challenges encountered by Al and the intricacy involved in solving typical issues within the domain.                                      | 3   | 1   | 3   |     | 3   |     |     | 1   |     |      |      |      |
| CO4          | Systematically analyze and evaluate the presented techniques, then strategically employ them to address real-world challenges.                                                              | 1   | 1   | 1   |     |     |     | 1   | 1   |     |      | 1    |      |
| CO5          | Create and evaluate advanced Al approaches, exemplified by intelligent systems and expert systems.                                                                                          |     | 3   | 3   |     | 1   |     |     | 3   |     |      |      | 3    |

### Subject/Code No: Cloud Computing/6CS4-06 LTP: 3L+0T+0P Semester: 6th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                           | P01 | P02 | P03 | P04 | P05 | 90d | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Recognize the progression of cloud computing and its practical uses over time                                                           | 3   | 3   | 2   |     |     | 3   |     |     |     |      | 1    | 1    |
| CO2          | Evaluate the structure, framework, and various models of cloud computing's design and architecture.                                     | 3   | 2   | 2   |     | 1   | 1   |     |     |     |      | 2    | 2    |
| CO3          | Measure an appraisal of virtualization technology and data centers, including their applications within the context of cloud computing. | 3   | 2   | 2   |     | 1   | 2   |     |     |     |      | 2    | 1    |
| CO4          | Write the understanding of security concerning data, data centers, and cloud services.                                                  | 3   | 2   | 2   |     | 1   | 2   |     |     |     |      | 1    | 1    |
| CO5          | Explain cloud services such as AWS and Google App Engine in terms of their integration capabilities with cloud applications.            | 3   | 2   | 1   |     | 3   | 1   |     |     |     |      |      | 1    |

### Subject/Code No: Distributed System/6CS5-11 LTP: 2L+0T+0P Semester: 6th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                            | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Illustration of various architectures used to design distributed systems along with different types of operating systems.                | 3   | 3   | 2   | 2   |     |     |     |     |     |      |      | 2    |
| CO2          | Analysis of concurrent programming with inter process communication techniques, such as remote method invocation, remote events.         | 3   | 1   | 3   | 1   |     |     |     |     |     |      |      | 1    |
| CO3          | Evaluation of various distributed file system through case studies.                                                                      | 3   | 3   | 1   | 1   | 1   |     |     |     |     |      |      | 1    |
| CO4          | Analysis of distributed shared memory models and their failures in distributed computation.                                              | 3   | 3   | 3   | 1   |     |     |     |     |     |      |      | 1    |
| CO5          | Analyze various faults and their consequences and replicated data management through exploration different types of Distributed Systems. | 3   | 3   |     | 3   | 1   |     |     |     |     |      |      | 1    |

### Subject/Code No: E Commerce & ERP/6CS5-13 LTP: 2L+0T+0P Semester: 6th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                              | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | PO11 | P012 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Describe the Ecommerce and ERP, delving into their respective requisites and the infrastructure needed to support them.                                    | 3   | 1   |     |     |     |     | 3   | 3   |     |      |      | 3    |
| CO2          | Examine the necessary infrastructure and software prerequisites to ensure the operational functionality of Ecommerce portals.                              | 3   |     |     |     |     | 1   | 3   | 3   |     |      |      | 3    |
| CO3          | Elaborate on the operational mechanisms of the Internet, web portals, and Ecommerce portals, while highlighting the essential infrastructure requirements. | 3   | 3   |     |     |     |     | 3   |     |     |      | 1    | 3    |
| CO4          | Apply the effectiveness of tools and techniques in the realm of digital marketing, considering their resultant impact.                                     | 3   | 3   |     |     |     |     | 3   |     |     |      |      | 3    |
| CO5          | Construct an XML-based database and formulate an XML application tailored for storing data.                                                                | 3   | 3   |     |     |     |     | 2   |     |     |      |      | 3    |

### Subject/Code No: Digital Image Processing Lab/6CS4-21 LTP: 0L+0T+3P Semester: 6th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                      | P01 | P02 | P03 | P04 | PO5 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Apply image enhancement operation and image Arithmetic Operations on a given image | 2   | 2   | 2   |     | 2   |     |     |     | 2   |      |      | 2    |
| CO2          | Demonstrate image restoration and histogram processing on images                   | 2   | 2   | 2   | 2   | 2   |     |     |     | 2   |      | 2    | 2    |
| CO3          | Distinguish and compare various Noise and filtering algorithms on images           | 2   | 2   | 2   | 2   | 2   |     |     |     | 2   |      |      | 2    |
| CO4          | Illustrate image restoration and segmentation techniques on an image               | 2   | 2   | 2   | 2   | 2   |     |     |     | 2   |      | 2    | 2    |
| CO5          | Apply pattern recognition techniques on images using features extraction           | 2   | 2   | 2   |     | 2   |     |     |     | 2   |      |      | 2    |

Subject/Code No: Machine Learning Lab/6CS4-22 LTP: 0L+0T+3P Semester: 6th Course Outcome Mapping with Program Outcome

|              | Oodise Odtoome mapping                                                                                                          |     |     |     |     |     |     |     |     |     |      |      |      |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO<br>Number | CO Definition                                                                                                                   | P01 | P02 | БОЗ | P04 | 50d | 90d | 704 | 80d | 60d | PO10 | P011 | P012 |
| CO1          | Understand the mathematical and statistical prospective of machine learning algorithms through python programming.              |     | 3   |     | 3   | 3   |     |     |     |     |      |      | 3    |
| CO2          | Evaluate the machine learning models pre-<br>processed through various feature engineering<br>algorithms by python programming. |     | 3   |     | 3   | 3   |     |     |     |     |      |      | 3    |
| CO3          | Design and evaluate the supervised models through python in built functions.                                                    | 3   | 3   | 3   |     |     |     |     |     |     |      |      |      |
| CO4          | Design and evaluate the unsupervised models through python in built functions.                                                  | 3   | 3   | 3   |     |     |     |     |     |     |      |      | 3    |
| CO5          | Understand the basic concepts of deep neural network model and design the same.                                                 | 3   | 2   | 3   |     | 2   |     |     |     |     |      |      |      |

Subject/Code No: Python Lab/6CS4-23 LTP: 0L+0T+3P Semester:6th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                       | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | List various data types in python and use them to solve basic python programs.                                                      | 3   | 3   |     | 2   | 3   |     |     |     |     |      |      |      |
| CO2          | Describe Conditional statements and Looping structures concepts in python and apply these to create searching and sorting programs. | 3   | 3   |     | 2   | 2   |     |     |     |     |      |      |      |
| СОЗ          | Explain usage of List, Tuples, Set, Dictionary and Strings and use these to solve programming problems in different ways.           | 3   | 3   |     | 2   | 3   |     |     |     |     |      |      |      |
| CO4          | Discuss file handling concepts and apply them to create basic data handling programs.                                               | 3   | 3   |     |     | 3   |     |     |     |     |      |      |      |
| CO5          | Understand various built-in python functions and formulate user-defined functions.                                                  | 3   | 3   |     |     | 3   |     |     |     |     |      |      |      |

### Subject/Code No: Mobile Application Development Lab/6CS4-24 LTP: 0L+0T+3P Semester: 6th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                    | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|--------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Construct fundamental concepts of Android programming.                                           | 3   | 3   | 3   |     | 2   |     |     |     |     |      |      |      |
| CO2          | Construct diverse Android applications focusing on layouts and immersive interactive interfaces. | 3   | 3   | 3   |     | 2   |     |     |     |     |      |      |      |
| CO3          | Build Android applications centered around server less mobile databases such as SQLite.          | 3   | 3   | 3   |     | 2   |     |     |     |     |      |      |      |
| CO4          | Demonstrate an application that records data onto the SD card.                                   | 3   | 2   | 3   |     | 2   |     |     |     |     |      |      |      |
| CO5          | Design a compact Android Studio application.                                                     | 3   | 2   | 3   |     | 2   |     |     |     |     |      |      |      |

### Subject/Code No:7CS4-01/Internet of Things Semester: 7th Semester LTP: 3L+0T+0P Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                               | P01 | P02 | P03 | P04 | P05 | 90d | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Recognize the fundamental idea behind the Internet of Things (IoT).                                         | 2   | 1   | 2   | 2   | 1   |     | 1   |     |     |      |      |      |
| CO2          | Apply the connection of diverse sensors to Arduino/Raspberry Pi.                                            | 2   | 2   |     | 2   | 2   |     |     |     |     |      |      |      |
| CO3          | Execute wireless data transmission among distinct devices.                                                  | 2   | 1   | 2   |     | 2   |     |     | 1   |     |      |      |      |
| CO4          | Display proficiency in transferring sensor data to and from cloud-based servers.                            | 1   | 1   | 1   | 1   | 2   |     | 1   | 1   |     |      |      |      |
| CO5          | Evaluate the transformative impact of the Internet on Mobile Devices, Cloud Computing, and Sensor Networks. | 1   | 2   | 1   | 1   | 1   | 1   | 1   | 1   |     |      |      |      |



### Subject/Code No: 7AG6-60.2/Environmental Engineering and Disaster Management Semester: 7th Semester LTP: 3L+0T+0P Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                                                                                                                 | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | State the natural environment and its relationships with human activities and realize the importance of ecosystem and biodiversity for maintaining ecological balance and know the objective and scope of the course.                                                                         | 2   |     |     |     |     | 2   | 2   | 3   |     |      |      | 3    |
| CO2          | Examine different types of pollutants, their distinguishing traits, and comprehend the significance of ensuring a secure water supply system and water quality.                                                                                                                               | 2   |     |     |     |     | 3   | 3   | 1   |     |      |      | 2    |
| CO3          | Evaluate strategies for managing solid waste, examining its attributes and the repercussions of solid waste on the environment. Assess both the quantity and attributes of solid waste, as well as its proper disposal methods. Recognize the significance of sanitation within this context. | 3   |     |     |     |     | 3   | 3   |     |     |      |      |      |
| CO4          | Assess the factors influencing the volume and attributes of wastewater, and analyze the processes involved in its treatment.                                                                                                                                                                  | 3   |     |     |     |     | 2   | 2   |     |     |      |      | 2    |
| CO5          | Generalize various types of Disasters and their social and environmental impact and the associated risk and vulnerability and plan the disaster management.                                                                                                                                   | 2   |     |     |     |     | 3   | 3   |     |     |      |      | 2    |

Subject/Code No: 7CS4-21/Internet of Things Lab Semester: 7th Semester LTP: 0L+0T+4P Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                | P01 | P02 | P03 | P04 | P05 | P06 | P07 | PO8 | P09 | PO10 | PO11 | P012 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Recognize the constituent Components within IoT Architecture.                                                                                | 2   | 1   | 2   | 1   | 1   |     | 1   | 1   | 1   | 1    | 1    |      |
| CO2          | Construct connections between Devices and Sensors, applying theoretical understanding.                                                       | 3   | 2   | 2   | 2   | 2   |     |     |     |     |      | 3    |      |
| соз          | Implement wireless data transmission techniques among various devices.                                                                       | 2   | 2   | 2   | 3   | 2   |     | 2   |     | 2   |      |      |      |
| CO4          | Evaluate and select appropriate IoT Devices and Sensors based on provided Case Studies.                                                      | 1   | 3   | 1   | 1   |     |     |     |     | 1   | 1    |      | 1    |
| CO5          | Execute the upload and download of sensor data on cloud and server, culminating in a comprehensive and proficient utilization demonstration. | 3   | 1   | 1   | 1   | 1   |     | 1   |     | 1   |      | 1    | 1    |

Subject/Code No: 7CS4-22/Cyber Security Lab Semester: 7<sup>th</sup> Semester LTP: 0L+0T+4P Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                  | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Utilizing substitution and transposition techniques to achieve encryption and decryption of plain text, demonstrating comprehension and practical application. | 3   | 3   | 1   |     | 3   |     |     |     |     |      |      |      |
| CO2          | Design a solution for Key Exchange problem and understand the general attacks on system                                                                        | 3   | 3   | 1   |     | 3   |     |     |     |     |      |      |      |
| CO3          | Analyse the data transferred in client server communication and working of various network protocol                                                            | 3   | 3   | 3   |     | 1   |     |     |     |     |      |      | 1    |
| CO4          | Understand security-based tools like Wire shark, tcp dump, rootkits, snort etc.                                                                                | 3   | 3   | 1   | 3   | 1   | 3   |     |     |     |      |      |      |
| CO5          | Apply encryption, decryption techniques for secure data transmission, and digital signature generation, demonstrating understanding and application.           | 3   | 3   | 2   | 2   | 2   |     |     |     |     |      |      | 2    |

Subject/Code No: 8CS4-01/Big Data Analytics Semester: 8th Semester LTP: 3L+0T+0P Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                        | P01 | P02 | F03 | P04 | P05 | 90d | 70 <b>d</b> | 80d | 60d | PO10 | P011 | P012 |
|--------------|----------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-------------|-----|-----|------|------|------|
| CO1          | Classify the building blocks of Big Data and review the growing field of Big Data Anayltics                          | 2   | 1   | 1   | 2   | 2   |     |             |     |     |      |      |      |
| CO2          | Compose the algortihm of data intensive problem using map reduce example                                             | 1   | 1   | 3   | 1   | 1   |     |             |     |     |      |      |      |
| CO3          | Study and implement Writable Classes in Hadoop I/O                                                                   | 2   | 3   | 2   | 2   | 3   |     |             |     |     |      |      |      |
| CO4          | Design and Implementation of Big Data Analytics using pig to solve data intensive problems and to generate analytics | 2   | 1   | 3   | 2   | 1   |     |             |     |     |      |      |      |
| CO5          | Implement Big Data Activities using Hive                                                                             | 2   | 2   | 1   | 2   | 1   |     |             |     |     |      |      |      |

Subject/Code No: 8TT6-60.2/Disaster Management Semester: 8th Semester LTP: 3L+0T+0P

Course Outcome Mapping with Program Outcome

|              | Course Outcome Mapping                                                                                                                                    | AAICII | 1106 | ji aiii | Outo | OIIIC |     |     |     |     |      |      |      |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|---------|------|-------|-----|-----|-----|-----|------|------|------|
| CO<br>Number | CO Definition                                                                                                                                             | PO1    | P02  | PO3     | P04  | 50d   | 90d | 70q | 80d | 60d | PO10 | P011 | P012 |
| CO1          | Discuss the practicalities of hazards, disasters with associated natural/social phenomena Understand this with disaster management theory (cycle, phases) | 2      | 2    |         |      | 3     |     | 3   | 1   |     | 2    |      |      |
| CO2          | List the existing global frameworks and existing agreements(e.g. Sendai)                                                                                  | 2      | 2    |         | 2    |       | 1   | 2   | 1   |     |      |      | 1    |
| CO3          | Choose a methods of community involvement as an essential part of successful DRR. Humanitarian Assistance/Support before and after disaster               | 1      | 1    |         | 1    |       | 2   | 2   | 1   |     |      |      | 2    |
| CO4          | Technological innovations in Disaster Risk Reduction: Advantages and problems.                                                                            | 1      | 2    |         |      |       |     | 3   | 1   |     | 1    |      | 2    |
| CO5          | Experience on conducting independent DM study including data search, analysis and presentation of disaster case study.                                    | 2      | 1    |         |      |       | 2   | 3   | 1   |     |      |      | 1    |

### Subject/Code No: 8CS4-21/Big Data Analytics Lab Semester: 8th Semester LTP: 0L+0T+2P Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                    | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Summarize and implement the basic data structure alogrithms like Linked list, stack, queue, set and map in Java. | 3   | 3   | 3   | 3   |     |     |     |     |     |      |      |      |
| CO2          | Illustrate the knowlege and implement different file management in hadoop                                        | 3   | 2   | 2   | 2   | 2   |     |     |     |     |      |      |      |
| CO3          | Disscuss the example of map reduce and develop the data application using variety of system                      | 3   | 2   | 3   | 2   |     |     |     |     |     |      |      |      |
| CO4          | Evalute and perform different operation on Data using Pig Latin                                                  | 3   | 3   |     | 3   |     |     |     |     |     |      |      |      |
| CO5          | Illustrate different operations on relations and databases using Hive.                                           | 3   |     |     |     | 3   |     |     |     |     |      |      |      |

### Subject/Code No: 8CS4-22/Software Testing & Validation Lab Semester: 8th Semester LTP: 0L+0T+2P Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                           | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand the Automation Testing Approach using various tool                           |     | 3   |     |     | 3   |     |     |     |     |      |      |      |
| CO2          | Analyse & discuss the performance of different websites using JMeter                    |     | 3   | 2   |     | 2   |     |     |     |     |      |      |      |
| CO3          | Calculate the coverage analysis of programs using Eclemma tool.                         |     |     |     |     | 3   |     |     |     |     |      |      |      |
| CO4          | Describe & calculate the mutation score for various programs using jumble testing tool. | 3   |     |     |     |     |     |     |     |     |      |      |      |
| CO5          | Generate Test sequences and compare using Selenium tool for different websites.         |     | 3   | 2   | 2   | 3   |     |     | ·   |     |      |      |      |

### **Bachelor of Technology Artificial Intelligence & Data Science**

Program Name: Artificial Intelligence & Data Science (Session: 2021-22)

Subject/Code No: Technical Communication 3AID1-02 LTP: 3+0+0 Semester: III

**Course Outcome Mapping with Program Outcome** 

| CO<br>Number | CO Definition                                                                                             | PO1 | P02 | PO3 | P04 | PO5 | 90d | P07 | PO8 | P09 | PO10 | P011 | PO12 |
|--------------|-----------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand the process of technical Communication in terms of LSRW.                                       |     |     |     |     |     |     |     | ı   | 1   | 3    | 1    | 1    |
| CO2          | Apply the concept of Technical Materials/Texts in various technical Documents.                            |     |     |     |     |     |     |     | -   | -   | 3    | -    | 1    |
| CO3          | Enhance the skills in the process of technical communication in terms of LSRW.                            |     |     |     |     |     |     |     | 1   | 1   | 3    | 1    | 1    |
| CO4          | Implement the basic concepts of technical communication in Technical Reports, Articles and their formats. |     |     |     |     |     |     |     | 1   | -   | 3    | -    | 2    |

Subject/Code No: Advanced Engineering Mathematics 3AID2-01 LTP: 3+0+0
Semester: III
Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                           | PO1 | P02 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | P012 |
|--------------|---------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Develop the concept of Probabilistic models and Random Variable.                                        | 3   | 2   | 3   | 1   | 2   | 1   | ı   | -   | 1   | ı    | 1    | -    |
| CO2          | Alaysis through statistical methods like Normal distribution, Binomial Distrution etc.                  | 3   | 3   | 3   | 3   | 1   | 1   | -   | -   | -   | -    | -    | -    |
| CO3          | Mathematical modeling for Industrial Problem using linear programing and solution by Graphical methods. | 2   | 2   | 3   | 2   | 1   | 2   | -   | -   | -   | -    | -    | -    |
| CO4          | Finding Solution of real time problems with Mathematical modelling.                                     | 2   | 3   | 3   | 2   | 1   | 2   | -   | -   | -   | -    | -    | -    |
| CO5          | Evaluate and create model for problems related to transportation and assignment                         | 3   | 1   | 3   | 1   | 1   | 1   | -   | -   | -   | -    | -    | -    |

Subject/Code No: Digital Electronics & 3AID3-04 LTP: 3+0+0 Semester: III

Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                          | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|----------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand and apply number system in digital design                                   | 2   | 3   | 2   | -   | -   | 1   | 1   | 1   | -   | -    | ı    | 2    |
| CO2          | Apply the laws of Boolean algebra to represent represent and simplify digital circuits | 1   | 3   | 2   | 1   | 2   | ı   | ı   | ı   | -   | 1    | ı    | 3    |
| CO3          | Calculate the parameters of logic families and define their characteristics.           | 2   | -   | 3   | 2   | 3   | ı   | ı   | ı   | -   | -    | ı    | 2    |
| CO4          | Develop competence in Combinational Logic Problem formulation and Logic Optimization   | 1   | 3   | 3   | 2   | 2   | -   | -   | 1   | -   |      | 1    | 2    |
| CO5          | Classify the different types of flip-flops and design various sequential circuits      | 1   | 3   | 2   | 1   | 2   | -   | -   | -   | -   | -    | -    | 2    |

Subject/Code No: Data Structure and Algorithms 3AID4-05 LTP: 3+0+0

Semester: III

### **Course Outcome Mapping with Program Outcome**

| CO<br>Number | CO Definition                                                                                        | P01 | P02 | P03 | P04 | 50d | 90d | 70q | P08 | 60d | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Know the concept of stack operations and its implementation to solve real time problems              | 1   | 2   | 3   | -   | -   | 1   | -   | -   | -   | 1    | ı    | -    |
| CO2          | Recognize the knowledge of Linked List and Queues to design algorithms for complex engineering tasks | 3   | 2   | 2   | 1   | -   | -   | -   | -   | -   | 1    | 1    | -    |
| CO3          | Analyze and design efficient searching and sorting techniques                                        | 2   | 1   | 3   | 1   | 1   | 2   | 1   | -   | -   | 1    | 1    | -    |
| CO4          | Evaluate problems by storing data in tree structure and performing basic operations                  | 2   | 2   | 2   | 2   | -   | 2   | -   | -   | -   | ı    | ı    | -    |
| CO5          | Apply graph concept for complex problem and understand hasing                                        | 1   | 3   | 2   | 1   | -   | 1   | -   | -   | -   | -    | -    | -    |

Subject/Code No: Object Oriented Programming 3AID4-06 LTP: 3+0+0 Semester: III

| CO<br>Number | CO Definition                                                                                                                        | P01 | P02 | P03 | P04 | PO5 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Knowing the basic knowledge of object-oriented programming language constructs.                                                      | 2   | 3   | 3   | 2   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO2          | Discussing and identifying the concept of reference, dynamic memory allocation and concept of various types of functions in classes. | 2   | 3   | 3   | 2   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO3          | Apply inheritance and it's types in real time problems.                                                                              | 2   | 3   | 3   | 2   | -   | -   | 1   | -   | 1   | 1    | ı    | -    |
| CO4          | Implement concept of polymorphism to perform different types of bindings.                                                            | 1   | 3   | 3   | 2   | -   | -   | -   | -   | 1   | •    | •    | -    |
| CO5          | Create application using I/O and file handling with exception handling.                                                              | 1   | 3   | 3   | 2   | -   | -   | -   | -   | 1   | 1    | -    | -    |

# Subject/Code No: Software Engineering 3AID4-07 LTP: 3+0+0 Semester: III

### **Course Outcome Mapping with Program Outcome**

| CO<br>Number | CO Definition                                                                                         | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Decompose the given project in various phases of a lifecycle.                                         | 1   | 1   | 2   | 2   | 2   | -   | -   | -   | -   | 2    | -    | 2    |
| CO2          | Choose appropriate process model depending on the user requirements.                                  | 1   | -   | 2   | 2   | 2   | -   | -   | -   | -   | ı    | 1    | 1    |
| CO3          | Perform various life cycle activities like Analysis, Design, Implementation, Testing and Maintenance. | 1   | 1   | 2   | 2   | 1   | -   | -   | -   | -   | -    | 2    | 1    |
| CO4          | Know various processes used in all the phases of the product.                                         | 2   | -   | 3   | 3   | 1   | 1   | 1   | -   | 1   | 1    | 2    | 2    |
| CO5          | Analyse the knowledge, techniques, and skills in the development of a software product.               | 1   | 2   | 2   | 1   | 1   | -   | -   | -   | 1   | 1    | 1    | 1    |

Subject/Code No: Data Structures Lab 3AID4-21 LTP: 0+0+3

Semester: III

### **Course Outcome Mapping with Program Outcome**

| CO<br>Number | CO Definition                                                                                    | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|--------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand and examine the concept of array & its storage                                        | 2   | 2   | 3   | 3   | 2   | 2   | -   | -   | -   | -    | -    | -    |
| CO2          | Illustrate the implementation of basic data structure using an array.                            | 2   | 2   | 3   | 2   | -   | 2   | -   | -   | -   | -    | -    | -    |
| CO3          | Analyse and compare different searching and sorting techniques                                   | 2   | 3   | 2   | 2   | -   | 2   | -   | -   | -   | -    | -    | -    |
| CO4          | Develop programs to perform operations on Non-<br>linear Data Structures such as Tree and Graphs | 3   | 3   | 3   | 1   | 1   | 1   | -   | -   | -   | -    | -    | -    |
| CO5          | Design and use different sorting algorithms                                                      | 3   | 2   | 2   | 2   | -   | 2   | -   | -   | -   | -    | -    | -    |

Subject/Code No: Object Oriented Programming Lab 3AID4-22

LTP: 0+0+3

Semester: III

| CO<br>Number | CO Definition                                                                                                              | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|----------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand the concept of C++ programming language while evaluating different access specifiers to define member function. | 2   | 2   | 2   | 3   | 3   | 1   | 2   | 1   | 1   | 1    | 1    | 1    |
| CO2          | Implement memory allocation techniques and various inbuilt functions.                                                      | 2   | 2   | 2   | 3   | 3   | -   | 2   | 1   | -   | 1    | ı    | -    |
| CO3          | Know inheritance and analyse the types of inheritance.                                                                     | 2   | 2   | 2   | 3   | 3   | 1   | 2   | 1   | 1   | 1    | ı    | 1    |
| CO4          | Apply the concept of polymorphism to perform different types of bindings.                                                  | 2   | 2   | 2   | 2   | 2   | 1   | 2   | -   | -   | -    | -    | -    |
| CO5          | Develop and use of application related to I/O and file handling with exception handling.                                   | 2   | 2   | 2   | 2   | 2   | -   | 2   | ı   | -   | ı    | -    | -    |

## Subject/Code No: Software Engineering Lab 3AID4-23 LTP: 0+0+3 Semester: III

#### **Course Outcome Mapping with Program Outcome**

| CO<br>Number | CO Definition                                                                                     | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand the software engineering methodologies involved in the phases for project development. | 2   | 2   | 2   | 2   | 1   | -   | 1   | -   | ı   | 1    | ı    | 2    |
| CO2          | Know about open-source tools used for implementing software engineering methods.                  | 1   | 2   | 2   | 2   | 2   | -   | -   | -   | 1   | -    | -    | 1    |
| CO3          | Develop product-startups implementing software process models in software engineering methods.    | 2   | 2   | 2   | 2   | 2   | -   | -   | -   | 1   | -    | 2    | -    |
| CO4          | Understand Open-source Tools: StarUML / UMLGraph / Topcased.                                      | 2   | 3   | -   | 3   | 3   | -   | -   | -   | ı   | -    | 2    | -    |
| CO5          | Discuss and analyse how to develop software requirements specifications for a given problem.      | 1   | 2   | 2   | 1   | 1   | -   | -   | -   | -   | -    | -    | 1    |

Subject/Code No: Digital Electronics Lab 3AID4-24

LTP: 0+0+3

Semester: III

**Course Outcome Mapping with Program Outcome** 

|              | Course Outcome was                                                                                                                                | pilig | WILL I | 1091 | uiii 0 | 40011 |     |     |     |     |      |      |      |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------|--------|-------|-----|-----|-----|-----|------|------|------|
| CO<br>Number | CO Definition                                                                                                                                     | P01   | P02    | P03  | P04    | 50d   | 90d | 70q | P08 | 60d | PO10 | P011 | P012 |
| CO1          | List different types of logic gates, identify their ICs and also verify their truth tables.                                                       | 2     | 2      | 3    | -      | -     | -   | -   | -   | -   | -    | -    | 2    |
| CO2          | Demonstrate the functioning of basic logic gates, adder, and subtractor using universal gates.                                                    | 2     | 2      | 3    | 3      |       |     |     | -   |     | -    | 1    | 2    |
| CO3          | Design a combinational circuit using MSI devices and verify its functionalities.                                                                  | 3     | 2      | 3    | 2      | -     | -   | -   | -   | -   | -    | -    | 2    |
| CO4          | Develop various sequential circuit using Flip Flops and verify its functionalities.                                                               | 2     | 3      | 2    | 1      | 2     | 1   | 1   | -   | 1   | -    | 1    | 2    |
| CO5          | Formulate Various types of counters, Shift registers SISO, SIPO, PISO, PIPO using Flip-Flops and verify its functionalities using simulation tool | 2     | 2      | 2    | -      | 3     | -   | -   | -   | -   | -    | -    | 2    |

Subject/Code No: Industrial Training 3AID7-30 LTP: 0+0+3

Semester: III

| CO<br>Number | CO Definition                                                                                                                | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Compose an interest in research-oriented fields and devlop the ability to research for literature and prepare brief report   | 2   | 3   | -   | -   | -   | 2   | 2   | 2   | 1   | 1    | -    | -    |
| CO2          | Identify the skills, competencies and points of view needed by professionals in the field most closely related to the course | 2   | 3   | -   | -   | 3   | -   | -   | -   | 2   | -    | -    | -    |
| CO3          | Discuss and identify about topics of current intellectual importance                                                         | 1   | -   | -   | 1   | 1   | 2   | 1   | -   | 1   | 1    | 2    | -    |
| CO4          | Develop the communication skills and awareness about the industrial environment.                                             | -   | -   | -   | -   | -   | -   | 2   | 1   | 1   | 2    | 1    | -    |
| CO5          | Revise Skill development for presentation.                                                                                   | 1   | -   | 3   | -   | 3   | -   | -   | -   | -   | -    | 3    | -    |

# Subject/Code No: Discrete Mathematical Structures 4AID2-01 LTP: 3+0+0 Semester: IV

#### **Course Outcome Mapping with Program Outcome**

| CO<br>Number | CO Definition                                                                                            | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|----------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Explain the various fundamental concepts of the Set theory and Logics.                                   | 3   | 2   | 3   | 1   | -   | 1   | 1   | 1   | •   | 1    | •    | -    |
| CO2          | Illustrate the concept of relations and Diagraph to analyse the area of greatest impact for improvement. | 3   | 3   | 3   | 3   | 1   | -   | -   | -   | -   | -    | -    | -    |
| CO3          | Create the application part of lattices in distributed computing and Data mining.                        | 2   | 2   | 3   | 2   | 1   | 2   | ı   | 1   | 1   | 1    | 1    | -    |
| CO4          | Implementation of Graphs and their application in real time problem                                      | 3   | 2   | 2   | 2   | 2   | 2   | -   | -   | -   | -    | -    | -    |
| CO5          | Analyse the concept of Algebraic Structures.                                                             | 3   | 3   | 3   | 1   | 1   | 1   | -   | -   | -   | -    | -    | -    |

Subject/Code No: Managerial Economics and Financial Accounting 4AID1-03 LTP: 3+0+0 Semester: IV

### **Course Outcome Mapping with Program Outcome**

| CO<br>Number | CO Definition                                                                                                                                                                               | P01 | P02 | P03 | P04 | P05 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Recognize and describe the fundamental concepts of Economics and Financial Management and define the meaning of national income, demand, supply, cost, market structure, and balance sheet. | 1   | 3   | 1   | 3   | -   | 2   | 2   | 1   | 1   | 1    | ı    | 2    |
| CO2          | Calculate and classify the domestic product, national product and elasticity of price on demand and supply.                                                                                 | -   | 1   | 3   | 2   | -   | 1   | 1   | -   | -   | -    | 2    | 2    |
| CO3          | Draw the cost graphs, revenue graphs and forecast the impact of change in price in various perfect as well as imperfect market structures.                                                  | 1   | 1   | 3   | 2   | -   | 1   | -   | 1   | 1   | -    | 2    | 1    |
| CO4          | Compare the financial statements to interpret the financial position of the firm and evaluate the project investment decisions.                                                             | -   | 3   | 3   | 3   | -   | -   | -   | -   | 1   | -    | 3    | 1    |

Subject/Code No: Microprocessors & Interfaces 4AID3-04 LTP: 3+0+0 Semester: IV

| CO<br>Number | CO Definition                                                                | P01 | P02 | P03 | P04 | P05 | P06 | P07 | PO8 | P09 | PO10 | PO11 | P012 |
|--------------|------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Discuss working of functional components of computer system.                 | 3   | 2   | 3   | 2   | 2   | -   | -   | -   | -   | -    | -    | 2    |
| CO2          | Demonstrate an overall functional structure of the Microprocessor.           | 2   | 2   | 1   | 2   | 2   | 1   | 1   | 1   | 1   | ı    | 1    | 1    |
| CO3          | Explain how interrupts are used to implement I/O control and data transfers. | 2   | 2   | 2   | 1   | 2   |     | -   | ı   | 1   | -    |      | 1    |
| CO4          | To learn the design aspects of I/O and Memory Interfacing circuits.          | 1   | 2   | 2   | 2   | 2   |     | -   | 1   |     | -    |      | 1    |
| CO5          | Implement their practical approach through laboratory experiments.           | 2   | 2   | 1   | 2   | 2   | 1   | 1   | 1   | 1   | ı    | 1    | 1    |

# Subject/Code No: Database Management System 4AID4-05 LTP: 3+0+0 Semester: IV

#### **Course Outcome Mapping with Program Outcome**

| CO<br>Number | CO Definition                                                                         | P01 | P02 | PO3 | P04 | P05 | 90d | 70d | P08 | 60d | P010 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Develop database using E-R diagram to represent simple database application scenarios | 2   | 2   | 3   | -   | 1   | 1   | ı   | ı   | ı   | -    | ı    | -    |
| CO2          | Identify data from database using query language                                      | 2   | 2   | -   | 2   | -   | 1   | -   | -   | -   | -    | -    | -    |
| CO3          | Apply normalization process to refine database schema                                 | 3   | 2   | 3   | 2   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO4          | Describe transaction processing and Serializability                                   | 3   | 3   | -   | -   | -   | 2   | -   | -   | -   | -    | -    | -    |
| CO5          | Interpret the concept of Concurrency Control and concept of Failure and Recovery      | 3   | 3   | -   | 2   | -   | -   | -   | -   | 1   | -    | -    | -    |

## Subject/Code No: Theory of Computation 4AID4-06 LTP: 3+0+0 Semester: IV

### **Course Outcome Mapping with Program Outcome**

| CO<br>Number | CO Definition                                                                                                                                                                                                                                       | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Analyse the concept of Finite Automata and distinguish between Non- Deterministic Finite Automata and Deterministic Finite Automata. Analyse regular sets and its properties. Composition of Regular Expression from Finite Automata and viceversa. | 1   | 2   | 2   | 2   | ı   | ı   | 1   | ı   | ı   | ı    | 1    | -    |
| CO2          | Understand the Context Free Grammar and its simplification.                                                                                                                                                                                         | 2   | 2   | 2   | 2   | -   | -   | -   | ı   | -   | ı    |      | -    |
| CO3          | Asses the Context Free Language and generation of Push Down Automata for Context Free Grammar.                                                                                                                                                      | 2   | 2   | 3   | 3   | 1   | 1   | 1   | 1   | 1   | -    | -    | -    |
| CO4          | Know the Turing Machine and its various types. Discuss the Hierarchy of formal languages.                                                                                                                                                           | 2   | 2   | 3   | 3   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO5          | Evaluating the P, NP, NP complete, NP hard problems with the help of examples.                                                                                                                                                                      | 2   | 3   | 3   | 3   | 1   | 1   | 1   | ı   | ı   | 1    | -    | -    |

## Subject/Code No: Data Communication and Computer Networks 4AID4-07 LTP: 3+0+0 Semester: IV

|              | Course Outcome was                                                                                                              | philia | AAICII | riogi | aiii O | ulcon | 10  |     |     |     |      |      |      |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|--------|--------|-------|--------|-------|-----|-----|-----|-----|------|------|------|
| CO<br>Number | CO Definition                                                                                                                   | P01    | P02    | PO3   | P04    | P05   | 90d | P07 | P08 | 60d | PO10 | P011 | P012 |
| CO1          | Describe the concept of signals and illustrate the functionality of OSI & TCP/IP reference model.                               | 3      | 2      | 2     | 1      | -     | -   | -   | 1   | 1   | -    | 1    | -    |
| CO2          | Explain channel allocation, framing, flow control, and error control mechanisms and apply them using data link layer protocols. | 3      | 2      | 3     | 2      | 1     | 1   | ı   | -   | ı   | ı    | ı    | 1    |
| CO3          | Determine the function of network layer, design subnets and calculate IP addresses for a network.                               | 3      | 3      | 3     | 2      | ı     | ı   | ı   | -   | ı   | ı    | ı    | ı    |
| CO4          | Illustrate and Analyse different transport layer protocols and functions.                                                       | 3      | 2      | 2     | 2      | -     | -   | -   | -   | -   | -    | -    | -    |
| CO5          | Analyze the different protocols at Application layer.                                                                           | 3      | 1      | 2     | 1      | -     | -   | -   | -   | -   | -    | -    | -    |

## Subject/Code No: Microprocessor and Interface Lab 4AID4-21 LTP: 0+0+3 Semester: IV

#### **Course Outcome Mapping with Program Outcome**

| CO<br>Number | CO Definition                                                                                                                                       | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Knowing and apply the fundamentals of assembly level programming of microprocessors and microcontroller.                                            | -   | 2   | 2   | 2   | 2   | 2   | -   | -   | -   | -    | -    | 2    |
| CO2          | Implement standard microprocessor real time interfaces including GPIO, serial ports, digital-to-analog converters and analog-to-digital converters. | -   | -   | 2   | 3   | 2   | -   | -   | -   | -   | -    | -    | 3    |
| CO3          | Interpret Troubleshoot interactions between software and hardware.                                                                                  | -   | -   | 3   | -   | 3   | 3   | 1   | 1   | 1   | 1    | 1    | 3    |
| CO4          | Analyze abstract problems and apply a combination of hardware and software to address the problem.                                                  | -   | -   | 3   | 3   | 3   | -   | -   | -   | -   | -    | -    | 3    |
| CO5          | Use standard test and measurement equipment to evaluate digital interfaces.                                                                         | -   | -   | 3   | -   | 3   | 3   | -   | -   | -   | -    | -    | 3    |

Subject/Code No: Data Base Management System Lab 4AID4-22 LTP: 0+0+3
Semester: IV

### **Course Outcome Mapping with Program Outcome**

| CO<br>Number | CO Definition                                                                 | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Know how to make database schema for given scenario's                         | 3   | 3   | 2   | -   | 2   | ı   | -   | ı   | ı   | ı    | ı    | 1    |
| CO2          | Apply Keys and Constraints on database using RDBMS.                           | 3   | 3   | 3   | 2   | 2   | ı   | •   | ı   | ı   | ı    | ı    | ı    |
| CO3          | Formulate aggregate functions                                                 | 3   | 3   | 2   | -   | 1   | 1   | 1   | 1   | -   | ı    | 1    | -    |
| CO4          | Compose PL/SQL including stored procedures, stored functions, cursors concept | 3   | 2   | 2   | -   | 3   | 1   | -   |     |     | 1    | 1    |      |
| CO5          | Develop Triggers, SQL and Procedural interfaces                               | 3   | 3   | 2   | 3   | 2   | -   | 1   | -   | -   | -    | -    | -    |

Subject/Code No: Network Programming Lab 4AID4-23 LTP: 0+0+3

Semester: IV

| CO<br>Number | CO Definition                                                                                         | P01 | P02 | P03 | P04 | P05 | 90d | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Describe the functioning of various networking equipment's and Standard Network Topologies            | 3   | -   | -   | -   | -   | 2   | 1   | -   | -   | -    | 1    | 2    |
| CO2          | Explain and Define the LAN Installation and Configurations techniques                                 | 3   | -   | 1   | 1   | 2   | 1   | ı   | 1   | ı   | 1    | ı    | -    |
| CO3          | Design code for various Error correcting techniques and framing methods through C Language            | 3   | 2   | 3   | -   | -   | -   | ı   | -   | -   | -    | ı    | -    |
| CO4          | Analyze and verify client and server involving UDP/TCP sockets using Socket Programming.              | 3   | 2   | 2   | -   | -   | -   | 1   | -   | -   | -    | 1    | -    |
| CO5          | Demonstrate and determine the Communication Models between client and server using Network Simulator. | 3   | 2   | -   | 1   | 2   | 1   | -   | -   | -   | -    | -    | -    |

## Subject/Code No: Linux Shell Programming Lab 4AID4-24 LTP: 0+0+3 Semester: IV

### **Course Outcome Mapping with Program Outcome**

| CO<br>Number | CO Definition                                                                                      | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|----------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Know and apply Key Concepts and Commands for Shell Programming                                     | 3   | 2   | 2   | -   | 3   | -   | 1   | -   | 2   | -    | -    | 2    |
| CO2          | Analyze the different security measures that can be implemented to protect the directory structure | -   | 3   | -   | -   | -   | -   | -   | -   | 3   | -    | -    | 3    |
| CO3          | Define Approaches to Mastering Shell Quoting Mechanisms                                            | 1   | 1   | 1   | 3   | 1   | 1   | 1   | 1   | 3   | 1    | 1    | 3    |
| CO4          | Evaluate Patterns with simple Regular Expressions using Filters using various Command              |     |     | 3   | 1   |     |     |     | 1   | 3   |      | 1    | 3    |
| CO5          | Explain how to use scripting to enhance command output.                                            | -   | -   | 3   | -   | -   | -   | -   | -   | 3   | -    | -    | 3    |

Subject/Code No: Java Lab 4AID4-25 LTP: 0+0+3 Semester: IV

| CO<br>Number | CO Definition                                                                                          | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|--------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Use the syntax and semantics of java programming language and basic concepts of OOP.                   | 2   | 2   | 2   | 2   | -   | -   | -   | -   | -   | ı    | ı    | 2    |
| CO2          | Develop reusable programs using the concepts of inheritance, polymorphism, interfaces and packages.    | 2   | 2   | 2   | 2   | 2   | -   | -   | -   | -   | -    | -    | 2    |
| CO3          | Apply the concepts of Multithreading and Exception handling to develop efficient and error free codes. | 1   | -   | 3   | -   | -   | 1   | -   | -   | 1   | ı    | 3    | 3    |
| CO4          | Design event driven GUI and web related applications which mimic the real word scenarios.              | -   | -   | 3   | -   | -   | -   | -   | _   | -   | -    | 3    | 3    |
| CO5          | Design the applications using applets and use of graphics in java.                                     | 1   | -   | 3   | -   | -   | 1   | -   | -   | 1   |      |      | 3    |

### **Bachelor of Technology Civil Engineering**

Program Name: Civil Engineering (Session: 2021-22)

| S. No. | Course  | Course                            | CO No. | Course Outcomes                                                                                                                                                                                                                      | P01 | P02 | P03 | P03 | P05 | P06 | P07 | PO8 | P09 | PO10 | P011 | P012 |
|--------|---------|-----------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|        |         | <del>-</del> -0                   | CO 1   | Conduct investigations on interpolation and numerical integration based real world problems.                                                                                                                                         | 2   | 2   | -   | -   | -   | 1   | -   | ı   | -   | 1    | -    | 1    |
|        | 1       | Advance Engineering Mathematics-l | CO 2   | Analyze the various numerical methods and evaluate solution of problems based on differential equations, polynomial equations and Transcendental equations.                                                                          | 2   | 1   | 1   | 1   | -   | 1   | -   | ı   | -   | -    | -    | 1    |
| 1      | 3CE2-01 | ıgineering                        | CO 3   | Evaluate Laplace transform and inverse Laplace transforms to solve Initial Value Problem (IVP).                                                                                                                                      | 2   | 2   | 1   | 1   | -   |     | 1   | 1   | -   | -    | -    | 1    |
|        |         | dvance En                         | CO 4   | Apply Fourier transforms and inverse Fourier transforms to solve Initial Value Problem (IVP) and Boundary Value Problem (BVP).                                                                                                       | 2   | 2   | 1   | 1   | -   | -   | -   | 1   | -   | -    | -    | 1    |
|        |         | Ac                                | CO 5   | Apply Z-transform in discrete system and evaluate solution of problems based on recurrence relations.                                                                                                                                | 2   | 2   | 1   | 1   | -   | -   | ı   | 1   | -   | -    | 1    | 1    |
|        |         |                                   | CO 1   | Apply basics of grammar, common error in writing and speaking, study of advanced grammar, editing strategies to achieve appropriate technical style of official documents such as Project Reports, Manuals, and Minutes of Meetings. | -   | ı   | ı   | ı   | -   | ı   | ı   | ı   | 1   | 2    | -    | 1    |
|        | -02     | ımunication                       | CO 2   | Investigate, judge and assess their linguistic ability which will get enhanced by Identifying key principles and delivery techniques of effective public speaking (listening, speaking, writing, reading)                            | ı   | ı   | ı   | ı   | -   | ı   | 1   | ı   | 1   | 2    | -    | 2    |
| 2      | 3CE1-02 | Technical Communication           | CO 3   | Outline Notes and create different kinds of technical documents, plan information collection along with analyzing factors and strategies for Information design and document design in a organization.                               | ı   | ı   | ı   | ı   | -   | ı   | 1   | ı   | 1   | 1    | -    | 2    |
|        |         |                                   | CO 4   | Create emails and memos intended for an audience within the same company or team as well as to design Resume, Job Application, and Technical Reports.                                                                                | -   | ı   | ı   | -   | -   | -   |     | ı   | 1   | 2    | -    | 2    |
|        |         |                                   | CO 5   | Apply and analyze the relation between load, shear force, bending moment and slope deflection.                                                                                                                                       | -   | ı   | ı   | ı   | -   | -   | 1   | ı   | 1   | 2    | -    | 3    |
|        | 33      | ing                               | CO 1   | Analyze and evaluate Fundamental laws of mechanics.                                                                                                                                                                                  | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| 3      | 3CE3-03 | Engineering<br>Mechanics          | CO 2   | Evaluate structure by methods of joints and method of section.                                                                                                                                                                       | 2   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
|        | ത       | En                                | CO 3   | Differentiate the concept of Moment of Inertia of any section.                                                                                                                                                                       | 2   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |

|   |         |                                     |      | Analyze the principal of virtual works different                                                                                              |   |   |   |   |   |   |   |   |   |   |   |   |
|---|---------|-------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
|   |         |                                     | CO 4 | Analyze the principal of virtual works, different types of friction, Spring and their arrangement                                             | 3 | 2 | - | - | - | - | - | - | - | - | - | - |
|   |         |                                     | CO 5 | Relate stresses and strain for a structure.                                                                                                   | 2 | 2 | - | - | - | - | - | - | - | - | - | - |
|   |         |                                     | CO 1 | Analyze the importance of surveying and apply the methods for measuring angles and directions using various instruments.                      | 2 | 1 | - | - | - | - | - | - | - | - | - | - |
|   | 3CE3-05 | Surveying                           | CO 2 | Evaluate RL using levelling instruments of a given area.                                                                                      | 1 | 2 | 2 | - | - | - | - | - | - | - | - | - |
| 4 | Œ       | ırve                                | CO 3 | Analyze the different type of curve in field.                                                                                                 | 2 | - | 2 | 2 | - | - | - | - | - | - | - | - |
|   | 3       | Ĭ.                                  | CO 4 | Apply the concept of tachometry and photogrammetric in field.                                                                                 | 1 | - | 1 | 2 | - | - | - | - | - | - | - | - |
|   |         |                                     | CO 5 | Create the setting out of work using different instruments (Total station and EDM).                                                           | 1 | 2 | 1 | 1 | - | - | - | - | - | - | 1 | , |
|   |         |                                     | CO 1 | Understand various types of fluid and its properties.                                                                                         | 3 | 3 | - | - | - | - | - | - | - | - | - | - |
|   | 90      | nanics                              | CO 2 | Apply & analyze various pressures at a point in a static fluid, equilibrium condition and stability concept for floating bodies.              | 2 | 2 | 2 | - | - | - | - | - | - | - | - | - |
| 5 | 3CE3-06 | Fluid Mechanics                     | CO 3 | Explain types, behaviour and various phenomenon to estimate the fluid discharge.                                                              | 2 | - | 2 | 3 | - | - | - | - | - | - | - | - |
|   |         | Flui                                | CO 4 | Apply the concept of Euler, Bernoulli's and momentum equation.                                                                                | 2 | - | 2 | 2 | - | - | - | - | - | - | - | - |
|   |         |                                     | CO 5 | Evaluate the concept of laminar flow through pipes, its characteristics and losses.                                                           | 2 | 2 | 2 | 1 | - | - | - | - | - | - | - | - |
|   |         | uction                              | CO 1 | Understand various types of fluid and its properties.                                                                                         | 3 | 2 | - | - | - | - | - | - | - | - | - | - |
|   | 20      | Building Materials and Construction | CO 2 | Apply & analyze various pressures at a point in a static fluid, equilibrium condition and stability concept for floating bodies.              | 2 | 3 | - | 2 | 1 | 1 | - | - | - | - | 1 | - |
| 6 | 3CE3-07 | erials aı                           | CO 3 | Explain types, behaviour and various phenomenon to estimate the fluid discharge.                                                              | 3 | 2 | 2 | - | - | - | - | - | - | - | - | - |
|   |         | ng Mate                             | CO 4 | Apply the concept of Euler, Bernoulli's and momentum equation.                                                                                | 2 | - | 2 | 2 | ı | 1 | - | - | - | - | 1 |   |
|   |         | Buildir                             | CO 5 | Evaluate the concept of laminar flow through pipes, its characteristics and losses.                                                           | 2 | 2 | 1 | 2 | - | - | - | - | - | - | - | - |
|   |         |                                     | CO 1 | Understand and evaluate the geology: Branches and Scope of Geology and the concepts of various geological materials and weathering processes. | 3 | 2 | 2 | 1 | - | - | - | - | - | - | - | - |
|   | 89      | seology                             | CO 2 | Analyze and evaluate the properties, behaviour and engineering significance of different type of rocks and minerals.                          | 3 | 2 | 2 | 1 | - | - | - | - | - | - | - | - |
| 7 | 3CE3-08 | Engineering Geology                 | CO 3 | Interpret and analyze different type of geological features: Fold, Fault, Joints and Unconformities.                                          | 3 | 2 | 2 | 1 | - | - | - | - | - | - | - | - |
|   |         | Eng                                 | CO 4 | Relate and evaluate Geophysical methods for Subsurface Analysis and understand the site selection parameters for Dam& Tunnel.                 | 2 | 2 | 1 | - | - | 1 | - | - | - | - | - | - |
|   |         |                                     | CO 5 | Create and evaluate the basic concept of remote sensing & GIS in various fields of Civil Engineering.                                         | 1 | 1 | 1 | - | 1 | - | - | - | - | - | - | 1 |

|    |         |                                             |     | T                                                                                                                                                                                  |   |   |   |   |   |   |   |   |   |   |   |   |
|----|---------|---------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
|    |         |                                             | CO1 | Use different conventional instruments of measurements in surveying in length, angle, levelling measurements.                                                                      | 2 | 2 | - | - | - | - | 1 | - | 2 | 2 | - | 2 |
|    | Σ.      | Lab                                         | CO2 | Apply the procedures involved in field work and to work as a surveying team.                                                                                                       | 2 | 2 | - | - | - | - | 1 | - | 2 | 2 | - | 2 |
| 8  | 3CE3-21 | Surveying Lab                               | CO3 | Determine the Height of an object by trigonometric levelling                                                                                                                       | 2 | 2 | 1 | - | - | - | 1 | - | 2 | 2 | - | 2 |
|    | (1)     | Sur                                         | CO4 | Discuss and determine the modern tool of measurement in surveying like EDM, Total station etc.                                                                                     | 2 | 2 | 1 | - | 2 | - | 1 | - | 1 | 2 | - | 2 |
|    |         |                                             | CO5 | Conduct a survey, collect field data and plot them on a paper                                                                                                                      | 2 | 3 | 2 | - | 2 | - | 1 | - | 1 | 2 | - | 2 |
|    |         | 0                                           | CO1 | Able to demonstrate the basic properties and characteristics of incompressible fluid in laboratory.                                                                                | 2 | 1 | 1 | - | 1 | 1 | 1 | - | 2 | 2 | 2 | 3 |
| 9  | 3CE3-22 | nanics Lak                                  | CO2 | Able to demonstrate fundamental theorems governing fluid flows i.e., continuity, energy and momentum in laboratory.                                                                | 2 | 1 | ı | - | ı | 2 | ı | - | 2 | 2 | 2 | 3 |
| 3  | 3CE     | Fluid Mechanics Lab                         | CO3 | Able to measure different fluid properties using various type of equipments like measurement of flow, pressure velocity and head loss.                                             | 2 | 1 | - | - | - | 1 | - | - | 2 | 2 | 2 | 3 |
|    |         |                                             | CO4 | Classify the various pressure measuring devices.                                                                                                                                   | 1 | 1 | - | - | - | 1 | - | - | 2 | 2 | 2 | 2 |
|    |         |                                             | CO1 | Draw Orthographic projections of Lines, Planes, and Solids                                                                                                                         | 1 | - | 2 | - | 3 | - | - | - | - | - | - | 2 |
|    | m       | ed Civi<br>rawing                           | CO2 | Construct Isometric Scale, Isometric Projections and Views                                                                                                                         | 1 | - | 2 | - | 3 | - | - | - | - | - | - | 2 |
| 10 | 3CE3-23 | ter Aide<br>ering D                         | CO3 | Draw Sections of various Solids including Cylinders, cones, prisms and pyramids                                                                                                    | 1 | - | 2 | - | 3 | - | - | - | - | - | - | 2 |
|    | က       | Computer Aided Civil<br>Engineering Drawing | CO4 | Draw projections of lines, planes, solids, isometric projections and sections of solids including Cylinders, cones, prisms and pyramids using AutoCAD                              | 1 | 2 | 2 | - | 3 | 1 | 1 | - | - | - | - | 2 |
|    |         | als Lab                                     | CO1 | To study about selection criteria and uses of common building stones and dressing of stones.                                                                                       | 1 | 1 | - | - | - | 1 | 1 | - | 2 | 2 | 3 | 2 |
| 11 | 3CE3-24 | Civil Engineering Material                  | CO2 | To understand the types and properties of bricks and their determination as per IS code such as water absorption, compressive strength, effloresces, dimension and tolerance test. | 1 | 1 | - | - | - | 1 | 1 | 1 | 2 | 2 | 3 | 2 |
|    |         | Eng                                         | CO3 | To know raw material of cements.                                                                                                                                                   | 1 | 1 | - | - | - | 1 | 1 | 1 | 2 | 2 | 3 | 2 |
|    |         | Civil                                       | CO4 | To study the various properties of material i.e glass, kotastone etc.                                                                                                              | 1 | 1 | - | - | - | 1 | 1 | - | 2 | 2 | 2 | 2 |
|    |         |                                             | CO1 | Students should be able to learn the significance of earth and its minerals.                                                                                                       | 2 | 1 | - | - | - | 1 | - | - | 2 | 2 | 2 | 3 |
| 12 | 3CE3-25 | Geology Lab                                 | CO2 | Students should be able to learn the significance of rocks and its engineering properties.                                                                                         | 1 | 1 | - | - | ı | 1 | 1 | - | 2 | 2 | 3 | 2 |
|    | က       | Ģ                                           | CO3 | Students should be able to understand the application of geology knowledge to civil engineering construction.                                                                      | 1 | - | - | - | ı | 2 | 1 | - | 2 | 2 | 3 | 2 |

|    |         |                                                         | CO4  | To know about various applications of remote sensing techniques.                                                                                                                                                                                                             | 1 | 1 | - | - | 3 | 2 | 1 | - | 2 | 2 | 2 | 3        |
|----|---------|---------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|----------|
|    |         |                                                         | CO 1 | Apply concept of probability and evaluate solutions of real-world problems.                                                                                                                                                                                                  | 2 | 2 | - | - | - | - | - | - | - | 1 | - | 2        |
|    |         | ics-II                                                  | CO 2 | Analyze standard probability distributions and evaluate solutions of real-world problems.                                                                                                                                                                                    | 1 | 2 | 1 | - | - | - | - | - | - | - | 1 | 1        |
| 13 | 4CE2-01 | Advance Engineering Mathematics-II                      | CO 3 | Estimate the relationship between variables of databases of the problems in quantify and qualitative forms and solve problems by methods of correlation, regression and Rank correlation.                                                                                    | 3 | 1 | - | 1 | - | - | - | - | - | - | - | 1        |
|    | 40      | ingine:                                                 | СО   | Explore the relationship between variables of databases of the problems and evaluate                                                                                                                                                                                         |   |   |   |   |   |   |   |   |   |   |   |          |
|    |         | vance E                                                 | 4    | standard form of the problem by the method of least squares (Method of curve fitting).                                                                                                                                                                                       | 2 | 2 | - | - | - | - | - | - | - | - | - | 2        |
|    |         | Ad                                                      | CO 5 | Conduct investigation on hypothesis testing in statistical problems and evaluate solution of problem in appropriate form.                                                                                                                                                    | 2 | 3 | - | - | - | - | - | - | - | - | - | 2        |
|    |         |                                                         | CO 1 | Determine the objectives, nature, scope, role &responsibilities of a manager of a business undertaking.                                                                                                                                                                      | 2 | 2 | 2 | - | - | - | - | - | - | - | 1 | -        |
|    | -03     | Managerial Economics & Financial                        | CO 2 | Predict the demand for a product or product mix of a company & to analyze various factors influencing demand elasticity. Forecast & compute the future sales level of a product by using various quantitative & qualitative techniques and with the help of past sales data. | 3 | 2 | - | - | - | - | - | - | 2 | - | - | -        |
| 13 | 4CE1-03 | rial Econo                                              | CO 3 | Differentiate the meaning, importance, sources, & uses of capital in an enterprise and to estimate the working capital requirements.                                                                                                                                         | 2 | 2 | 2 | - | 3 | - | - | - | - | - | - | -        |
|    |         | Manage                                                  | CO 4 | Know the meaning, importance, steps, methods, uses & limitations of Capital Budgeting & Market Structure.                                                                                                                                                                    | 3 | - | - | - | 3 | - | - | - | - | - | 1 | 3        |
|    |         |                                                         | CO 5 | Interpret, analyze, discuss & comment on the financial performance of a business unit through liquidity leverage, coverage, turn over & profitability ratios.                                                                                                                | 3 | - | - | 3 | - | - | - | - | - | - | 1 | 3        |
|    |         | ring                                                    | CO 1 | Understand the concepts of Digital Electronics.                                                                                                                                                                                                                              | 3 | 1 | - | - | 1 | - | - | - | - | 1 | 1 | -        |
|    |         | il Enginee<br>s                                         | CO 2 | Interpret the Basic Electronics in measurements in Civil Engineering applications.                                                                                                                                                                                           | 3 | 2 | - | - | - | - | - | - | - | - | ı | <u>-</u> |
| 14 | 4CE3-04 | Basic Electronics for Civil Engineering<br>Applications | CO 3 | Analyze and equip with Errors in measurements systems and to expose to Data Acquisition and Processing.                                                                                                                                                                      | 3 | 2 | - | - | ı | - | - | - | ı | - | ı | -        |
|    |         | Electron                                                | CO 4 | Apply skills of Sensors and to explain Various Sensor Characteristics.                                                                                                                                                                                                       | 3 | _ | - | - | - | - | - | - | - | - | - | -        |
|    |         | Basic                                                   | CO 5 | To share them Image processing Tools and Mat lab codes on Images.                                                                                                                                                                                                            | 3 | - | - | - | 1 | - | - | - | - | - | - | -        |

|    |         | T                      |      | T .                                                                                                                                                                                                                                          |   |   |   |   |   |   |   |   |   |   | 1 |   |
|----|---------|------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
|    |         |                        | CO 1 | Understand and apply the concept of stress and strains and to evaluate stress and strains in different members.                                                                                                                              | 3 | 2 | 1 | - | - | - | - | - | - | - | ı | - |
| 45 | 4CE3-05 | Strength of Materials  | CO 2 | Apply and analyze the Bending moment,<br>Shear force and Axial thrust diagrams for<br>statically determinate beams and the<br>distribution of bending and shear stresses for<br>simple and composite sections.                               | 2 | 3 | 1 | - | - | - | - | - | - | - | 1 | - |
| 15 | 4CE     | trength of             | CO 3 | Interpret and compare the elementary concepts of torsion, shear stress in solid and hollow circular shafts.                                                                                                                                  | 2 | 2 | - | - | - | - | - | - | - | - | - | - |
|    |         | 0)                     | CO 4 | Evaluate the short and long columns subjected to various loading conditions.                                                                                                                                                                 | 3 | 2 | - | - | - | - | - | - | - | - | ı | - |
|    |         |                        | CO 5 | Apply and analyze the relation between load, shear force, bending moment and slope deflection.                                                                                                                                               | 2 | 2 | 1 | - | - | - | - | - | - | - | 1 | - |
|    |         |                        | CO 1 | Understand dimensional analysis and analyze the various models, concepts and characteristics of boundary layer and turbulent flow.                                                                                                           | 3 | 3 | - | - | - | - | - | - | - | 1 | ı | 1 |
|    |         | 5                      | CO 2 | Classify steady, unsteady, uniform and non-<br>uniform flow, to apply and evaluate gradually<br>and rapidly varied flow in open channel flow                                                                                                 | 2 | 3 | - | - | - | - | - | - | - | - | 1 | 1 |
|    | 90-     | ngineering             | CO 3 | Identify about the working of hydraulic machines like pumps, turbines: To apply and relate the performance of hydraulic machines                                                                                                             | 3 | 3 | - | - | - | - | - | - | - | - | 1 | 3 |
| 16 | 4CE3-06 | Hydraulics Engineering | CO 4 | Describe about hydrological phenomenon, unit hydrograph, analyze the rainfall, and properties of aquifer: to analyze and estimate the runoff and peak runoff rate.                                                                           | 3 | 2 | 2 | 1 | - | 1 | - | - | 1 | 1 | ı | 1 |
|    |         |                        | CO 5 | Apply and estimate water requirement, delta, duty and base and various aspects of Design of Canal: To understand various approaches of cross section of channels and silt control in canals and analyze Kennedy's theory and Lacey's theory. | 3 | 3 | 2 | - | - | - | - | - | - | - | 1 | 2 |
|    |         |                        | CO 1 | Understand and analyze the different types of buildings, criteria for location and site selection and the different methods of drawing sun chart and sun shading devices.                                                                    | 3 | - | - | - | - | - | 2 | - | - | - | 1 | - |
| 17 | 4CE3-07 | Building Planning      | CO 2 | Apply and analyze the Climatic and comfort Consideration using climate modulating devices and evaluate the orientation criteria for tropical climate with the consideration of Building Bye Laws and NBC Regulations.                        | 2 | 2 | - | - | - | - | - | - | - | - | 1 | 1 |
|    | 4(      | Buildir                | CO 3 | Evaluate the principles of Planning and different factors affecting planning including VastuShastra in Modern Building planning.                                                                                                             | 2 | 3 | - | - | - | - | - | - | - | - | ı | 1 |
|    |         |                        | CO 4 | Interpret and compare the functional design and Accommodation requirements of different Buildings.                                                                                                                                           | 2 | 2 | - | - | - | - | - | - | - | - | 1 | 2 |
|    |         |                        | CO 5 | Relate the Services in Buildings.                                                                                                                                                                                                            | 2 | 2 | _ | - | - | _ | - | - | _ | - | - | 2 |

|     |         |                            | CO 1 | Apply the knowledge of properties and role of various ingredients like cement, aggregate, admixtures etc. to produce good quality concrete.           | 3 | 3 | - | - | - | - | - | - | - | - | - | 1 |
|-----|---------|----------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
|     | ω       | ınology                    | CO 2 | Analyze properties of fresh and harden concrete by examining in lab and perform destructive, semi-destructive and non-destructive tests for concrete. | 3 | 2 | - | - | 2 | - | - | - | - | - | - | 1 |
| 18  | 4CE3-08 | Concrete Technology        | CO 3 | Categorize the concrete manufacturing process and selecting right step by step process to achieve workable, durable of fresh and harden concrete.     | 2 | 3 | - | - | - | - | - | - | - | - | 3 | 2 |
|     |         | 0                          | CO 4 | Design the concrete mix with suitable chemical admixture; this fulfils the required properties for fresh and hardened concrete.                       | 2 | 2 | 2 | 1 | 1 | - | - | 1 | 1 | 1 | 1 | 1 |
|     |         |                            | CO 5 | Create the advance concrete and develop such concrete by adding and manipulating composition.                                                         | 3 | - | 2 | 3 | ı | - | - | ı | ı | ı | ı | 1 |
|     |         | മ്                         | CO1  | Explain basic properties of materials.                                                                                                                | 2 | 1 | - | - | - | - | 2 | - | - | 2 | - | 2 |
|     | -21     | Material Testing Lab       | CO2  | Identify the test to be conducted for different properties of building materials.                                                                     | 2 | 2 | 1 | - | - | - | 2 | - | - | 2 | - | 2 |
| 19  | 4CE3-21 | ərial Te                   | CO3  | Test for different properties of building materials.                                                                                                  | 2 | 2 | 1 | 1 | 1 | - | 1 | 1 | 1 | 2 | - | 2 |
|     |         | Mate                       | CO4  | Analyze the test results for different properties.                                                                                                    | 2 | 2 | 2 | - | - | - | - | - | - | 2 | - | 2 |
|     |         | g Lab                      | CO1  | Describe the equipments used for behaviour and measurement of fluid in hydraulic structure                                                            | 2 | 1 | - | - | - | - | 1 | - | 1 | 2 | - | 2 |
| 20  | 4CE3-22 | ngineerin                  | CO2  | Apply characteristics of Pelton Wheel, hydraulic jump and Centrifugal Pump in civil engineering                                                       | 2 | 3 | - | - | - | - | 1 | 1 | 1 | 2 | - | 2 |
|     | 4CI     | Hydraulics Engineering Lab | CO3  | Analyze the discharge by using various instruments like venturi meter Broad crested weir.                                                             | 2 | 3 | 1 | 2 | 1 | - | 1 | 1 | 1 | 2 | 1 | 2 |
|     |         | Hy                         | CO4  | Evaluate momentum equation, Manning'& Chezy's coefficient of roughness for the bed of a given flume.                                                  | - | - | 1 | ı | ı | - | - | 1 | ı | ı | 1 | - |
|     |         | б                          | CO1  | Create drawing of basic components of buildings.                                                                                                      | 2 | 1 | - | - | 1 | 2 | - | - | 2 | 2 | 3 | 2 |
| 21  | 4CE3-23 | Building Drawing           | CO2  | Identify the components of different buildings required as per their functional need.                                                                 | 1 | 1 | - | - | - | 1 | - | - | 2 | 2 | 2 | 3 |
| - ' | 4CE     | uilding                    | CO3  | Create drawing of building masonry.                                                                                                                   | 1 | 1 | - | - | - | 1 | - | - | 2 | 2 | 2 | 3 |
|     |         | В                          | CO4  | Draw the plan, section and elevation of a building                                                                                                    | 1 | 1 | - | - | 3 | 1 | 2 | - | 2 | 2 | 2 | 3 |
|     |         | /ing Lab                   | CO1  | Identify the instruments required for a particular survey problem                                                                                     | 1 | 2 | - | - | - | - | - | - | - | - | - | 2 |
| 22  | 4CE3-24 | Advanced Surveying Lab     | CO2  | Device a method to fulfill the desired objective.                                                                                                     | 1 | 2 | 2 | - | 1 | - | - | - | - | 1 | - | 2 |
|     |         | Advance                    | CO3  | Conduct the survey experiment using appropriate instruments and procedure.                                                                            | 1 | 2 | 2 | 2 | 2 | 1 | - | - | - | - | - | 2 |

|    |         |                                       | CO4  | Analyze the data obtained and get the results after necessary computations.                                                                                                    | 1 | 2 | 2 | 2 | 2 | 1 | - | - | - | - | - | 2 |
|----|---------|---------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
|    |         |                                       | CO1  | Explain the Quality control test on ingredients of concrete.                                                                                                                   | 2 | 1 | - | - | - | - | 1 | - | - | 2 | - | 2 |
| 00 | 3-25    | ite Lab                               | CO2  | Conduct Quality Control test on ingredients of fresh and hardened concrete.                                                                                                    | 2 | 2 | - | - | - | - | 1 | - | 2 | 2 | - | 2 |
| 23 | 4CE3-25 | Concrete Lab                          | CO3  | Analyze the test on fresh and hardened concrete and Non-destructive test on concrete.                                                                                          | 3 | 2 | - | ı | 2 | - | 1 | - | 2 | 2 | 1 | 2 |
|    |         |                                       | CO4  | Design the concrete mix.                                                                                                                                                       | 2 | 3 | 2 | 2 | - | 1 | 1 | - | 2 | 2 | - | 2 |
|    |         | ' and                                 | CO 1 | Implement the basic concept of engineering economics and evaluate cost optimization.                                                                                           | 2 | - | - | - | - | - | - | - | - | 1 | - | - |
|    | _       | ınology<br>ınt                        | CO 2 | Apply the safety provision in the construction industry.                                                                                                                       | - | 2 | - | 1 | - | 2 | - | - | - | 1 | • | 1 |
| 24 | 5CE3-01 | ion Techno<br>equipment               | CO 3 | Analyze the safety in construction and evaluate safety requirements.                                                                                                           | - | - | 2 | 1 | - | - | 1 | - | - | - | - | - |
|    | 2       | Construction Technology and equipment | CO 4 | Analyze the Construction Planning and Materials Management.                                                                                                                    | 1 | - | - | - | - | - | - | - | - | - | - | - |
|    |         | Cons                                  | CO 5 | Distinguish the different types of Construction Equipment and their Management.                                                                                                | - | - | - | - | 1 | - | - | - | - | - | - | - |
|    |         | _                                     | CO 1 | Calculate the degree of indeterminacy of any structures.                                                                                                                       | 3 | 2 | - | 1 | - | - | - | - | - | 1 | - | - |
|    | 72      | alysis-                               | CO 2 | Analyze the indeterminate structures by different kinds of methods.                                                                                                            | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 |
| 25 | 5CE3-02 | Structure Analysis-                   | CO 3 | Analyze the indeterminate structures by different kinds of methods.                                                                                                            | 3 | 2 | - | 1 | - | - | - | - | - | - | - | - |
|    |         | Struct                                | CO 4 | Students will get the knowledge of elementary concepts of structural vibration.                                                                                                | 3 | 2 | - | 1 | - | - | - | - | - | - | - | - |
|    |         |                                       | CO 5 | Analyze the vibrating structure.                                                                                                                                               | 3 | 2 | - | 2 | - | - | - | - | - | 1 | - | - |
|    |         | S                                     | CO 1 | Analyze the Singly reinforced beam and Design the Singly reinforced beam by Working Stress Method.                                                                             | 2 | 3 | 2 | ı | - | - | - | - | - | 1 | 1 | - |
|    | 3-03    | Design of Concrete Structures         | CO 2 | Differentiate the Singly reinforced beam & doubly reinforced beam and Design the Doubly reinforced beam by using Limit State Method.                                           | 2 | 3 | 2 | 1 | - | - | - | - | - | 1 | 1 | - |
| 26 | 5CE3-03 | of Conc                               | CO 3 | Analyze the beam for flexure, shear, torsion, bond and anchorage and development length.                                                                                       | 1 | 3 | 2 | - | - | - | - | - | - | - | - | - |
|    |         | esign c                               | CO 4 | Categorized and design the one way and two-way concrete slab according IS 356 -2000.                                                                                           | 1 | 3 | 2 |   |   | - | _ | _ |   | - | 1 | - |
|    |         | ā                                     | CO 5 | Design the axially loaded, eccentrically loaded short columns, Isolated & Combined foundation.                                                                                 | 1 | 3 | 2 | - | - | - | - | - | - | - | - | - |
| 27 | 5CE3-04 | Geotechnical<br>Engineering           | CO 1 | Interpret the Objective, scope and outcome of the course. Understand the soil constituents and classification of soil also apply the Engineering and Index properties of soil. | 3 | 2 | 1 | - | - | 1 | - | - | - | ı | ı | - |
|    | 9C      | Geot                                  | CO 2 | Implement and analyze the concept of shearing strength of soil, Compaction of soil and vertical and horizontal stresses of soil.                                               | 3 | 2 | - | ı | - | - | - | - | - | 1 | 1 | - |

|    |                 |                                         |      | Apply and analysis the Course of 1990 of 19                                                                |   |   | 1 |   |   | 1 |   |   | 1 | 1 |   |   |
|----|-----------------|-----------------------------------------|------|------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
|    |                 |                                         | CO 3 | Apply and analyze the Compressibility of soil, Consolidation characteristics and settlement of soil.       | 2 | 1 | 1 | - | - | - | - | - | - | - | - | - |
|    |                 |                                         | CO 4 | Differentiate the stability of slopes and Earth pressures on soil.                                         | 1 | 2 | - | - | - | - | - | - | - | - | - | 1 |
|    |                 |                                         | CO 5 | Implement and analyze the Bearing capacity and Site investigation of soil.                                 | 2 | - | 2 | - | - | - | - | - | - | - | - | - |
|    |                 | Water Resources Engineering             | CO 1 | Apply appropriate methods of irrigation technique and evaluate water requirements for crop production.     | 3 | 2 | - | - | - | - | 1 | - | - | - | ı | ı |
|    | -05             | s Engi                                  | CO 2 | Evaluate channels for appropriate water application in respective areas.                                   | 3 | 1 | 2 | - | - | - | - | - | - | - | - | - |
| 28 | 5CE3-05         | nrce                                    | CO 3 | Design of various dams in respective areas.                                                                | 3 | 2 | - | 2 | - | - | - | - | - | - | - | - |
|    | ũ               | r Resol                                 | CO 4 | Apply various cross-drainage structures in respective areas.                                               | 3 | 2 | - | 1 | ı | - | - | - | - | - | ı | 1 |
|    |                 | Wate                                    | CO 5 | Analyze appropriate hydrological phenomena and estimate watershed yield.                                   | 3 | 1 | - | 1 | - | - | - | - | - | - | 1 | 1 |
|    |                 |                                         | CO 1 | Implement the basic concept of hazard and disaster.                                                        | 3 | 2 | 1 | - | - | - | - | - | - | - | - | - |
|    |                 | əment                                   | CO 2 | Analyze the Disaster Management Terminology.                                                               | 3 | - | - | - | 2 | 1 | - | - | - | - | - | - |
| 29 | 5CE5-12         | ∕lanagı                                 | CO 3 | Distinguish and analyze the different types of disasters.                                                  | - | - | - | - | 3 | - | - | - | - | - | - | - |
|    | 2C              | Disaster Management                     | CO 4 | Analyze and demonstrate the disaster management cycle and identify safety tips.                            | - | 3 | - | - | - | - | - | - | - | - | - | - |
|    |                 | Dis                                     | CO 5 | Relate the Disaster management system in India and evaluate the role of society in disaster management.    | - | - | - | 3 | 1 | - | - | - | - | - | 1 | 1 |
|    |                 |                                         | CO 1 | Describe the concept of Town Planning and different terminologies, town planning National Protocols        | 3 | 2 | 1 | ı | ı | - | - | - | - | - | ı | ı |
|    | <del>.</del> 13 | anning                                  | CO 2 | Discuss town planning methodologies and significant impact on a project                                    | 3 | - | - | - | 2 | 1 | - | - | - | - | - | - |
| 30 | 5CE5-13         | Town Planning                           | CO 3 | Apply the concept of town planning on real scenarios                                                       | - | - | - | - | 3 | - | - | - | - | - | - | - |
|    |                 | DT.                                     | CO 4 | Analyze effect of town planning on growth of a city                                                        | - | 3 | - | - | - | - | - | - | - | - | - | - |
|    |                 |                                         | CO 5 | Conduct case studies of various towns of India                                                             | - | - | - | 3 | - | - | - | - | - | - | - | - |
|    |                 | tructures                               | CO 1 | Analyze the sequence of construction activities and methods of construction of various structural elements | 3 | 2 | 1 | - | - | - | - | - | - | - | - | - |
|    | -14             | Repair and Rehabilitation of Structures | CO 2 | Evaluate the conventional and modern materials that are commonly used in Civil Engineering construction    | 3 | - | - | - | 2 | 1 | - | - | - | - | - | - |
| 31 | 5CE5-14         | habilit                                 | CO 3 | Apply and differentiate various NDT (Non-<br>Destructive Test) techniques.                                 | - | - | - | - | 3 | - | - | - | - | - | - | - |
|    |                 | and Re                                  | CO 4 | Differentiate among various Repairing techniques and materials                                             | - | 3 | - | ı | - | - | - | - | - | - | 1 | - |
|    |                 | Repair a                                | CO 5 | Conduct the investigation on the case studies of bridges, piers and different concrete structures.         | - | - | - | 3 | - | - | - | - | - | - | ı | - |

|    |         |                                          |      | I lindoustonal the final-neutrice of                                                                                                                                                                   |   | 1 | l | l |   |   |   |   |   | 1 |   | 1 |
|----|---------|------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
|    |         | ø                                        | CO 1 | Understand the fundamental concepts of ground improvement techniques in civil engineering construction activities                                                                                      | 2 | 3 | 1 | - | - | - | - | - | - | - | - | - |
|    |         | chniqu                                   | CO 2 | Describe the different techniques of ground improvements                                                                                                                                               | 2 | 3 | 1 | - | - | - | - | - | - | - | - | - |
| 32 | 5CE5-15 | Ground Improvement Technique             | CO 3 | Apply knowledge of mathematics, Science and Geotechnical Engineering to solve problems in the field of modification of ground required for construction of Civil Engineering structures.               | 2 | 3 | 1 | - | 1 | 1 | 1 | 1 | 1 | - | 1 | _ |
|    |         | round                                    | CO 4 | Illustrate reinforced wall design using steel strip or geo-reinforcement                                                                                                                               | 2 | 3 | 1 | - | - | - | - | - | - | - | - | - |
|    |         | Ð                                        | CO 5 | Use effectively the various methods of ground improvement techniques and Outline the solution for problematic soils                                                                                    | 2 | 3 | 1 | - | ı | ı | ı | ı | ı | - | ı | - |
|    |         |                                          | CO1  | Assess the bending moment and shear force for beams, columns, slabs and footings.                                                                                                                      | 2 | - | - | - | 1 | - | - | - | - | _ | 1 | 1 |
|    |         | es Design                                | CO2  | Analyze the design parameters of the flexural members to fulfill the requirements of WSM and Limit state of Collapse for Flexure, shear and torsion.                                                   | 2 | - | 2 | 3 | 1 | 1 | 1 | 1 | 1 | - | 1 | 2 |
| 33 | 5CE3-21 | Concrete Structures Design               | CO3  | Design of flexural members for flexure, shear, bond, development length & Electrical Engineering curtailment of bar to fulfill the criteria of Limit State of Collapse for Flexure, shear and Torsion. | 2 | 2 | 2 | 3 | ı | ı | ı | ı | ı | ı | ı | 2 |
|    |         | <sup>3</sup> 0                           | CO4  | Analyze and design of column and column footings economically and suitably recommend the appropriate type according to site conditions                                                                 | 2 | 2 | 2 | 3 | 1 | ı | 1 | ı | 1 | - | 1 | 2 |
|    |         | g Lab                                    | CO1  | Implement and analyze the properties of soil such as Grain size distribution, specific Gravity, liquid limit, plastic limit and density etc.                                                           | 1 | - | - | - | ı | ı | ı | ı | ı | - | ı | 2 |
| 34 | 5CE3-22 | l Engineering Lab                        | CO2  | Classify C-Ø values by unconfined compression Test Apparatus, Direct Shear Test Apparatus and Triaxial Test.                                                                                           | 1 | - | - | 2 | - | - | 1 | 1 | - | - | - | 2 |
|    | 2(      | Geotechnical                             | CO3  | Evaluate the differential free swell index, swelling pressure, CBR of soil.                                                                                                                            | 1 | 2 | 2 | 2 | 1 | - | - | - | - | - | - | 2 |
|    |         | Geot                                     | CO4  | Interpret the compressibility parameters of soil by consolidation test, permeability of soil by constant and falling head methods.                                                                     | 1 | 2 | 2 | 2 | 1 | - | - | 1 | - | - | - | 2 |
| 35 | 5CE3-23 | Water Resource<br>Engineering Design Lab | CO1  | LO1) Explain the basic concept of water resource engineering, canals, dams, well irrigation, cross drainage structure and hydrology.                                                                   | 1 | 2 | - | - | - | - | - | - | - | - | 1 | 1 |
| 33 | 9CE     | Water R<br>Engineering                   | CO2  | LO2) Apply the water resource concept in irrigation system, canals, diversion head works, dams, well irrigation, cross-drainage structure and hydrology.                                               | 2 | 2 | 2 | - | - | - | - | - | - | - | - | 1 |

|    |          | 1                         | 1    |                                                                                                                                                                          |   | ı |   |   |   |   | 1 |   |   |   |   |   |
|----|----------|---------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
|    |          |                           | CO3  | LO3) Analyze the water requirement of crop, seepage losses in dam, forces acting on dam, run off and rain fall.                                                          | 2 | 2 | 2 | 2 | - | - | - | - | - | - | - | 2 |
|    |          |                           | CO4  | LO3) Design of canal, surface and subsurface flows, dams like embankment and gravity dam, tube well.                                                                     | 2 | 2 | 2 | 2 | - | - | - | - | - | - | - | 2 |
|    |          |                           | CO 1 | Understand the basic concept of building configuration & differentiate the types of building, shear walls, framed structure and Tube Structure.                          | 2 | 3 | 1 | - | - | - | - | - | - | - | 1 | - |
|    | 11       | Analysis                  | CO 2 | Analyze the different types of design load as per Indian Standard Codes 875 Part-I, II & load Flow Concept in a Structure.                                               | 1 | 3 | 1 | 1 | 1 | - | - | - | - | - | 1 | - |
| 36 | 6CE03-01 | Wind & Seismic Analysis   | CO 3 | Differentiate the Flat, Pitched and Mono slope roof and analyze the roofs with respect to wind load as per Indian standard code IS 875-III.                              | 1 | 3 | 2 | - | - | - | - | - | - | - | ı | - |
|    |          | Wind                      | CO 4 | Analyze the frame structures for earthquake load as per Indian standard code IS1893-I.                                                                                   | 1 | 3 | 1 | - | - | - | - | - | - | - | - | _ |
|    |          |                           | CO 5 | Differentiate the provision for earthquake resistance building as per Indian standard code IS 3326, IS13827, IS13828, IS13920 and IS13935.                               | 1 | 3 | - | ı | ı | - | - | - | - | - | ı | - |
|    |          |                           | CO 1 | Understand among various types of structures and Examine & Produce the Structure by Strain Energy method and Unit Load Method.                                           | 2 | 3 | - | 1 | 1 | - | - | - | - | - | 1 | - |
|    | 75       | Structural Analysis-II    | CO 2 | Apply the basic principles of SFD & BMD for the rolling loads and mathematical problems with reference to rolling loads and ILD.                                         | 1 | 3 | - | 1 | - | - | - | - | - | - | - | - |
| 37 | 3CE3-02  | ıral An                   | CO 3 | Evaluate between types of arches and evaluate the stability of arches.                                                                                                   | - | 2 | - | - | - | - | - | - | - | - | 1 | - |
|    | )        | Struct                    | CO 4 | Analyze the concept of unsymmetrical bending and shear centre.                                                                                                           | - | 1 | - | - | - | - | - | - | - | - | 1 | - |
|    |          |                           | CO 5 | Analyze and Evaluate the Frame by using three different methods and build & differentiate among these methods.                                                           | - | 1 | - | 1 | ı | - | - | - | - | - | ı | _ |
|    |          |                           | CO 1 | Analyze the various water quality standard, Distinguish the water distribution system and design the various reservoir                                                   | - | - | 2 | 2 | ı | 2 | 1 | - | - | - | ı | - |
|    |          | leering                   | CO 2 | Analyze the various water treatment methods, design and apply the various parameters used in the sewer system.                                                           | - | 3 | 2 | 1 | 1 | - | - | - | - | - | 1 | - |
| 38 | 6CE3-03  | Environmental Engineering | CO 3 | Design the sewerage systems, analyze the various Sewage characteristics Quality parameters and Distinguish the Standards of disposal in land                             | - | - | 2 | 2 | - | 2 | 1 | - | - | - | - | - |
|    |          | Environ                   | CO 4 | Analyze the various treatment method of sewage, Evaluate the various Pollution due to improper disposal of sewage, Distinguish the Wastewater Disposal and Refuse method | - | - | - | 3 | 1 | 2 | 2 | - | - | - | - | - |
|    |          |                           | CO 5 | Analyze the Quantification of air pollutants, evaluate various control methods measures for Air pollution and noise pollution                                            | - | - | - | 3 | - | 2 | 2 | - | - | - | 1 | - |

|    |         |                                  | 1    | And a distance of the first                                                                                                                                           | T |   | 1 | 1 | 1 | 1 |   | 1 | 1 | 1 |   | 1 |
|----|---------|----------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
|    |         |                                  | CO 1 | Analyze steel sections used in steel structures and the suitable sections for design.                                                                                 | 2 | 2 | 2 | - | - | - | - | - | - | - | - | - |
|    |         | structures                       | CO 2 | Analyzing the different kinds of connection used in steel structures and being able to create the compression and tension member.                                     | 2 | 3 | 3 | - | - | - | - | - | - | - | - | - |
| 39 | 6CE3-04 | Design of Steel Structures       | CO 3 | Create the laterally supported and unsupported steel beams and analyze the gantry girder, plate girder and laterally loaded steel members.                            | 2 | 2 | 3 | 1 | - | - | - | - | - | - | 1 | - |
|    |         | Desi                             | CO 4 | Analyze and apply the different type's column bases.                                                                                                                  | 2 | 2 | 2 | - | - | - | - | - | - | - | - | - |
|    |         |                                  | CO 5 | Analyze and create the truss girder and foot over bridge.                                                                                                             | 2 | 2 | 2 | - | - | - | - | - | - | - | 1 | - |
|    |         | <b>5</b> )                       | CO 1 | To provide the student with the ability to estimate the quantities of item of works involved in buildings and bill of quantities                                      | 3 | 3 | 1 | - | - | 1 | - | - | - | - | 1 | - |
|    | 3-05    | Estimating and Costing           | CO 2 | To provide the student with the ability to estimate the quantities of item of works involved in different projects                                                    | - | - | - | - | 2 | 1 | - | 3 | - | 2 | თ | 1 |
| 40 | 6CE3-05 | ating a                          | CO 3 | To provide the student with the ability to do rate analysis                                                                                                           | - | - | 3 | - | - | - | 1 | - | - | - | - | - |
|    |         | Estime                           | CO 4 | Preparation of estimates for different works like roads, buildings, earth work, water supply etc.                                                                     | - | - | - | - | - | 1 | - | - | - | 2 | 1 | - |
|    |         |                                  | CO 5 | To provide the student with the ability to valuation of properties                                                                                                    | 2 | 2 | - | - | - | - | - | - | 1 | 1 | - | - |
|    |         | nent                             | CO 1 | Analyze and characterization of solid waste, hazardous waste constituents.                                                                                            | - | - | - | - | - | 2 | 2 | - | - | - | - | - |
|    |         | ападеп                           | CO 2 | Understand health and environmental issues related to solid waste management.                                                                                         | - | - | - | - | - | 2 | 2 | - | - | 1 | 1 | - |
| 41 | 3CE5-12 | Hazardous Waste Management       | CO 3 | Apply steps in solid waste management-<br>waste reduction at source, collection<br>techniques, materials and resource<br>recovery/recycling, transport of solid waste | - | - | - | - | - | 2 | 2 | - | - | 1 | 1 | - |
|    | 9       |                                  | CO 4 | Analyze treatment and disposal techniques, economics of the onsite vs. offsite waste management                                                                       | - | - | - | - | - | 2 | 2 | - | - | 1 | ı | - |
|    |         | Solid and                        | CO 5 | Evaluate the effectiveness of a waste-to-<br>energy facility in terms of energy production,<br>emissions, and waste reduction.                                        | - | - | - | - | - | - | - | - | - | - | ı | - |
|    |         | lement                           | CO 1 | Understand characteristics of road, road users and vehicle performance with traffic law                                                                               | 1 | 3 | - | - | - | - | - | - | 1 | - | ı | - |
|    | 8       | Manag                            | CO 2 | Analyze various traffic surveys and their interpretation with applications & significance.                                                                            | 1 | 1 | 1 | - | - | - | - | - | - | - | 1 | - |
| 42 | 6CE5-13 | əring &                          | CO 3 | Evaluate various intersections, traffic signs and markings.                                                                                                           | 1 | 1 | 1 | - | - | - | - | - | - | - | 1 | - |
|    | ġ       | Traffic Engineering & Management | CO 4 | Analyze road accidents its causes, effects, prevention, traffic and                                                                                                   | 1 | 2 | 2 | - | _ | - | 1 | _ | _ | _ | 1 | - |
|    |         | Traffic                          | CO 5 | Analyze Traffic Management System by Direct and indirect methods.                                                                                                     | 1 | 1 | - | - | - | - | - | - | - | - | 2 | - |

|    |         |                                             | CO 1 | Explain different types of bridges, components and loadings as per Indian standards provisions                                                          | 1 | - | - | - | ı | 1 | 1 | - | - | - | - | - |
|----|---------|---------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
|    | 4       | neering                                     | CO 2 | Apply the fundamental concept of bridge loadings on Steel and RCC bridges                                                                               | 2 | - | - | - | - | - | - | - | - | - | - | - |
| 43 | 6CE5-14 | Bridge Engineering                          | CO 3 | Analyze the RCC and steel bridges using Courbons and Hendry-Jaegar method                                                                               | - | 2 | 2 | - | - | - | - | - | - | - | - | - |
|    |         | Bridg                                       | CO 4 | Design of Bearings, Steel and RCC bridges according to IRC codal provisions                                                                             | - | - | 2 | 2 | - | - | - | - | - | - | - | - |
|    |         |                                             | CO 5 | Evaluate the impact of environmental factors on the durability of different bridge materials.                                                           | - | - | - | - | - | - | - | - | - | - | - | - |
|    |         |                                             | CO 1 | Define the use of rock mass classification systems (RMR & Q).                                                                                           | 3 | 1 | - | - | - | - | - | - | - | - | - | - |
|    |         |                                             | CO 2 | Explain methods for in situ investigation and laboratory testing of rock matrix and discontinuities.                                                    | 3 | 2 | - | - | ı | - | - | - | - | - | - | - |
| 44 | 6CE5-15 | Rock Engineering                            | CO 3 | Apply the knowledge of the characteristics and the mechanical properties (strength and failure criteria) of rock mass, rock matrix and discontinuities. | 3 | 2 | - | - | - | - | - | - | - | - | - | - |
|    | )9      | Rock I                                      | CO 4 | Analyse the stress distribution (isotropic, anisotropic) in situ and around an opening in rock (competent rock, jointed rock mass, blocky rock)         | 3 | 2 | 1 | - | - | - | - | - | - | - | - | - |
|    |         |                                             | CO 5 | Analyze the potential environmental impact of rock excavation and suggest appropriate mitigation measures.                                              | - | - | - | - | ı | - | - | - | - | - | - | - |
|    |         |                                             | CO 1 | Evaluate Photogrammetric and apply principles of Photogrammetric to create maps and their substitutes                                                   | 3 | 1 | 1 | - | 1 | - | - | - | 1 | - | - | - |
|    |         | bu                                          | CO 2 | Analyze the basic concept of remote sensing.                                                                                                            | 2 | 1 | 1 | - | - | 1 | - | - | - | - | - | - |
| 45 | 6CE5-16 | Remote Sensing                              | CO 3 | Evaluate and analyze different types of platforms, sensors and their characteristics in Remote Sensing.                                                 | 2 | 1 | 1 | - | 1 | - | - | - | - | - | - | - |
|    | 9CI     | GIS & Ren                                   | CO 4 | Analyze and create the different types of information from different remote sensing data products using various image processing techniques.            | 2 | 1 | 1 | 1 | 1 | - | - | - | - | - | - | - |
|    |         |                                             | CO 5 | Create the basic concept of GIS and analyze the use of GIS tools for civil engineering purpose.                                                         | 1 | 1 | 1 | 1 | 1 | 1 | - | - | - | - | - | - |
|    |         | sering                                      | CO1  | Understand the water quality parameters their permissible limits and compute population                                                                 | 1 | 2 | - | - | - | - | - | - | - | - | - | 1 |
|    | 3-21    | Engine<br>Ind Lab                           | CO2  | Analyze the physical and chemical tests to be conducted for the water before supply.                                                                    | 2 | 2 | 2 | - | - | - | - | - | - | - | - | 1 |
| 46 | 6CE3-21 | Environmental Engineering<br>Design and Lab | CO3  | Design of filters, tanks, densification units and transmission system                                                                                   | 2 | 2 | 2 | 2 | - | - | - | - | - | - | - | 2 |
|    |         | Envir                                       | CO4  | Design of sewer lines, storm water systems, aerobic & anaerobic treatment units                                                                         | - | - | - | - | - | - | - | - | - | - | - | - |

|    |          | ı                                                 | 1    |                                                                                                                                                     | 1 |   |   |   | 1 |   |   |   | 1 |   | 1 | 1 |
|----|----------|---------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
|    |          | ign Lab                                           | CO1  | Calculate the plastic moment of different cross section and design of bolted and welded connections                                                 | 2 | 2 | 2 | - | - | - | - | - | - | - | - | - |
| 47 | 6CE3-22  | Steel Structures Design Lab                       | CO2  | Analyze and design the tension, compression & column bases member under axial and combined loading                                                  | 2 | 3 | 3 | - | - | - | - | - | - | - | - | 1 |
|    | 9        | Struct                                            | CO3  | Discuss the pre-engineered buildings, bridges & trusses                                                                                             | 2 | 2 | 3 | 1 | - | - | - | - | - | - | - | 1 |
|    |          | Stee                                              | CO4  | Identify and demonstrate the various section of steel structures at field visit                                                                     | - | - | - | - | - | - | - | - | - | - | - | - |
|    |          | gand                                              | CO1  | Able to prepare preliminary and detailed estimates by various methods.                                                                              | 3 | 3 | 1 | - | 1 | 1 | - | - | - | - | 1 | ı |
| 48 | 6CE3-23  | / Surveyinç<br>Costing                            | CO2  | Able to do rate analysis of various items of work                                                                                                   | 2 | 1 | - | - | 2 | 1 | - | 3 | • | 2 | 3 | 1 |
| 40 | 9CE      | Quantity Surveying and<br>Costing                 | CO3  | Able to evaluate earth work for road, canals ad channels.                                                                                           | 2 | 2 | 3 | - | - | - | 1 | - | - | - | - | 1 |
|    |          | Quar                                              | CO4  | Able to do Valuation of Buildings and Properties.                                                                                                   | 2 | 2 | - | - | - | 1 | - | - | - | 2 | 1 | - |
|    |          | iining<br>ab                                      | CO1  | Understand concept of coefficient method (IS code) and apply it for analysis and design of continuous beams.                                        | 2 | - | - | - | - | - | - | - | - | - | - | 1 |
|    | -24      | th Reta<br>esign Ia                               | CO2  | Analysis and design of circular domes with u.d.l. & concentrated load at crown                                                                      | 2 | 1 | 2 | 3 | - | - | - | - | - | - | - | 1 |
| 49 | 6CE3-24  | Water and Earth Retaining<br>Structure design lab | CO3  | Classification of water tanks according to shape and design of rectangular, circular and intze type tanks.                                          | 2 | 2 | 2 | 3 | - | - | 1 | - | - | - | - | 2 |
|    |          | Wate                                              | CO4  | Analysis and design of Cantilever Retaining Walls and introduction to counterfort and buttress type retaining walls.                                | - | - | - | - | - | - | - | - | - | - | - | - |
|    |          | SNO                                               | CO1  | Apply the theoretical knowledge of bearing capacity to design various types of shallow foundation.                                                  | 2 | 2 | 2 | - | - | - | - | - | - | - | - | - |
| 50 | 3- 25    | OF FOUNDATIONS                                    | CO2  | Understand the design of pile foundation (covering both geotechnical and structural aspects)                                                        | 2 | 3 | 3 | - | - | - | - | - | - | - | - | 1 |
| 50 | 6CE3- 25 | _                                                 | CO3  | Discuss the different components of well foundation, its construction and design methods.                                                           | 2 | 2 | 3 | 1 | - | - | - | - | - | - | - | 1 |
|    |          | DESIGI                                            | CO4  | Use the theoretical knowledge of earth pressure to analyze and design of various retaining structures.                                              | - | - | - | - | ı | - | - | - | ı | - | 1 | 1 |
|    |          | ineering                                          | CO 1 | Discuss the planning, characteristics and development of the transportation system and classify the various road cross section elements and curves. | 3 | 1 | 1 | - | 1 | - | - | - | 1 | - | - | - |
| 51 | 7CE3-01  | Transportation Engineering                        | CO 2 | Analyze the various properties, procedures of highway construction material and equipment's.                                                        | 2 | 1 | 1 | - | - | 1 | - | - | - | - | - | - |
|    | 7        | nsport                                            | CO 3 | Design and construction of flexible and rigid pavements as per IRC                                                                                  | 2 | 1 | 1 | - | - | - | - | - | - | - | - | - |
|    |          | Trai                                              | CO 4 | Analyze the types and Selection of Gauges,<br>Selection of Alignment and Railway<br>component                                                       | 2 | 1 | 1 | 1 | - | - | - | - | - | - | - | - |

|    |           |                                       |      | Design and planning of signant payament by                                                                                                                                                                                                                               | 1 | I |   | 1 |   | 1 |   |   |   |   |   |   |
|----|-----------|---------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
|    |           |                                       | CO 5 | Design and planning of airport pavement by using various methods and modern trends in water transportation                                                                                                                                                               | 1 | 1 | 1 | 1 | 1 | 1 | - | - | - | - | - | - |
|    | 50.1      | Principle of Electronic communication | CO 1 | Describe the principles of various digital modulation systems and their properties, including bandwidth, channel capacity, transmission over bandlimited channels, intersymbol interference (ISI), demodulation methods, and error performance in the presence of noise. | 3 | 2 | - | - | - | - | - | - | 3 | - | 1 | - |
| 52 | 7EC6-60.1 | Electron                              | CO 2 | Apply the concepts to practical applications in telecommunication                                                                                                                                                                                                        | 3 | 2 | - | - | - | - | - | - | 3 | - | - | - |
|    |           | ciple of                              | CO 3 | Analyse communication systems in both the time and frequency domains.                                                                                                                                                                                                    | 3 | 2 | 3 | - | - | - | - | - | 3 | - |   | - |
|    |           | Prin                                  | CO 4 | Design a communication system comprised of both analog and digital modulation techniques.                                                                                                                                                                                | 3 | 3 | 3 | 3 | - | - | - | - | 3 | - | ı | - |
|    |           | nart                                  | CO 1 | Explain the smart grids components and architecture                                                                                                                                                                                                                      | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 3 | 2 | - | 3 | 3 |
| 53 | 7EC6.60.2 | Micro System Smart<br>Technology      | CO 2 | Apply different measuring methods and sensors used in smart grid                                                                                                                                                                                                         | 3 | 2 | 2 | 2 | - | 3 | 2 | - | 3 | 2 | 3 | 3 |
|    | 7EC       | icro Sy<br>Tech                       | CO 3 | Analyze various renewable energy technologies                                                                                                                                                                                                                            | 3 | 2 | 3 | 3 | 3 | 3 | - | - | 2 | 2 | 2 | 3 |
|    |           | Σ                                     | CO 4 | Designing of various smart grid technology-based devices.                                                                                                                                                                                                                | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 3 |
|    |           | .s <u>i</u>                           | CO 1 | To Apply direct stiffness, Rayleigh-Ritz, Galerkin and other mathematical methods to solve engineering problems.                                                                                                                                                         | 3 | - | - | - | - | - | - | - | - | - | 1 | - |
|    | 1.0       | Analys                                | CO 2 | To Analyze 1D and 2D problems of statics, fluid mechanics and heat transfer.                                                                                                                                                                                             | - | 3 | - | - | - | - | - | - | - | - |   | - |
| 54 | 7ME6-60.1 | Finite Element Analysis               | CO 3 | To evaluate the Eigenvalues and Eigenvectors for stepped bar and beam, explain nonlinear geometric and material non linearity.                                                                                                                                           | - | - | 3 | - | - | - | - | - | - | - | - | - |
|    |           | Ш                                     | CO 4 | To Create solutions for Higher order problems of the engineering field.                                                                                                                                                                                                  | - | - | ı | 3 | ı | - | - | - | ı | ı | ı | - |
|    |           |                                       | CO 1 | Describe the basic concept of Quality Management.                                                                                                                                                                                                                        | 1 | 1 | ı | - | ı | - | - | - | ı | ı | ı | • |
|    | 60.2      | nagement                              | CO 2 | Explain a system, component, and process to meet desired needs within limits using modeling process quality and learn the concept of control charts.                                                                                                                     | 2 | - | - | - | - | - | - | - | - | - | - | - |
| 55 | 7ME6-60.2 | Quality Management                    | CO 3 | Illustrate the concept of Quality Assurance, Acceptance sampling and study quality systems like ISO9000, ISO 13000 and Six Sigma.                                                                                                                                        | 3 | - | - | - | - | - | - | - | - | - | ı | - |
|    |           |                                       | CO 4 | Identify engineering problems, concept of reliability and Taguchi Method of Design of experiments.                                                                                                                                                                       | - | 2 | - | - | - | - | - | - | - | - | - | - |

|    | -          |                                | 1    |                                                                                                                                                                                 | 1 |   |   |   |   | 1 |   |   | 1 |   |   |   |
|----|------------|--------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
|    |            | Orives                         | CO 1 | Understand the constructional details and principle of operation of rotating electrical machines                                                                                | 3 | 3 | 2 | - | - | _ |   | - | _ | - | - | - |
|    | -60.1      | nes and [                      | CO 2 | Acquire knowledge about the working principle and various aspects of electric drives.                                                                                           | 3 | 3 | 2 | 2 | 1 | 1 | 2 | - | - | - | - | - |
| 56 | 7EE6-60.1  | Electrical Machines and Drives | CO 3 | Study and analyze the various control techniques for speed control on various electric drives.                                                                                  | 3 | 3 | 2 | 2 | 1 | ı | - | - | ı | 1 | 1 | - |
|    |            | Electr                         | CO 4 | Develop design knowledge on how to design<br>the speed control and current control loops of<br>an electric drive                                                                | 2 | 2 | 2 | 2 | 2 | 1 | - | - | 1 | 1 | ı | - |
|    |            | noi                            | CO1  | Classify and describe various renewable energy sources.                                                                                                                         | 2 | - | - | - | - | - | - | - | - | - | - | - |
|    | 0.2        | erat<br>3S                     | CO2  | Predict possible renewable energy sources.                                                                                                                                      | 3 | 1 | - | - | - | - | - | - | - | - | 1 | - |
| 57 | 9-9Ξ       | er Genera<br>Sources           | CO3  | Illustrate the renewable energy sources.                                                                                                                                        | 3 | 2 | 1 | - | ı | - | - | - | - | ı | ı | - |
|    | 77EE6-60.2 | Power Generation<br>Sources    | CO4  | Re-organize energy sources.                                                                                                                                                     | 3 | 3 | 2 | 1 | - | - | - | - | - | - | - | - |
|    | ·          | Pov                            | CO5  | Prioritize all other renewable energy sources as needed by societal application.                                                                                                | 3 | 1 | 1 | - | - | - | - | - | - | - | - | - |
|    |            | 0006 OSI                       | CO1  | Understand the importance of quality management and the ways individuals can affect quality.                                                                                    | - | 3 | - | - | 1 | - | - | - | - | 1 | 1 | - |
| 58 | 7CS6-60.1  | Quality Management / ISO 9000  | CO2  | Analyse the components of a quality management system and the role of the quality management system.                                                                            | - | - | 3 | - | 1 | 1 | - | - | 1 | 1 | 1 | - |
|    | 7C         | / Mana                         | CO3  | Apply quality management to improve computer-based systems.                                                                                                                     | - | - | - | 3 | - | - | - | - | - | - | 1 | - |
|    |            | Quality                        | CO4  | Design Various components of quality system to avoid failures and rectification.                                                                                                | - | - | - | - | - | - | - | - | - | - | 1 | - |
|    |            |                                | CO1  | Develop The Understanding of Cybercrime and legal Perspectives of Security Implications for Organizations in respect to the Mobile and Wireless Devices.                        | - | - | - | - | ı | 2 | - | - | ı | ı | ı | - |
| 59 | S6-60.2    | Security                       | CO2  | Analyze different cyber offences & attacks and Determine How a Criminals plan the cyber-Attacks.                                                                                | - | 2 | - | - | ı | ı | - | - | ı | ı | ı | - |
|    | 7CS        | Cyber                          | CO3  | Understanding the cyber security solutions and use of cyber security Tools in Cybercrime.                                                                                       | - | - | - | - | 3 | - | - | - | - | - | - | - |
|    |            |                                | CO4  | Evaluate and communicate the Management Perspective human role in security systems with an Organizational, emphasis on ethics, social engineering vulnerabilities and training. | - | - | - | - | - | - | - | 2 | - | - | 1 | - |
|    |            | Lab                            | CO1  | Understand the importance and determination of physical properties of aggregates.                                                                                               | 2 | 1 | - | - | - | 1 | 2 | _ |   | 2 | 1 | 2 |
| 60 | 3-21       | ıl Testing l                   | CO2  | Evaluate and analyse the suitability of materials from data collected by physical tests done on aggregates and bitumen.                                                         | 2 | 2 | 1 | - | - | - | 2 | - | - | 2 | 1 | 2 |
| OU | 7CE3-21    | Road Material Testing Lab      | CO3  | Design of different bituminous layers of flexible pavement and compare their results with IRC/MoRTH recommendations.                                                            | 2 | 2 | 1 | - | - | - | 1 | - | - | 2 | 1 | 2 |
|    |            | Ro                             | CO 4 | Prepare a formal report describing complex design procedures and results.                                                                                                       | 2 | 2 | 2 | - | - | - | - | - | - | 2 | - | 2 |

|    |         | ı                                                | 1    |                                                                                                                                         | ı |   |   |   |   |   |   |   |   |   |   |   |
|----|---------|--------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
|    |         | Professional Practices & Field Engineering Lab   | CO1  | Understand the basic concepts of Different types of Knots, Different types of plan layout in field and type of scaffolding and ladders. | 3 | 3 | 1 | - | - | 1 | - | - | - | - | - | - |
| 61 | 7CE3-22 | rofessional Practices {<br>Field Engineering Lab | CO2  | Identify the preparation Specification and bar bending schedule for reinforcement works.                                                | 2 | 1 | - | - | 2 | 1 | - | 3 | - | 2 | 3 | 1 |
|    | 70      | ession<br>eld Eng                                | CO3  | Analysis of Estimation and Valuation methods of buildings and properties.                                                               | 2 | 2 | 3 | - | - | - | 1 | - | - | - | - | 1 |
|    |         | Prof                                             | CO4  | Understand the use and type of scaffolding and ladders                                                                                  | - | - | - | - | - | - | - | 1 | 1 | - | - | - |
|    |         |                                                  | CO 1 | Develop a strategy for fostering a positive team environment through effective communication.                                           | 1 | - | - | - | - | 2 | 1 | 2 | 3 | 2 | 2 | 2 |
| 62 | 7CE3-23 | Soft Skills Lab                                  | CO 2 | Identify different types of nonverbal communication cues.                                                                               | 1 | - | - | - | - | 2 | 1 | 2 | 3 | 2 | 2 | 2 |
|    | 7CF     | Soft S                                           | CO 3 | Compare and contrast different communication styles and their appropriateness in various situations.                                    | 1 | - | - | - | - | 2 | 1 | 2 | 3 | 2 | 2 | 2 |
|    |         |                                                  | CO 4 | Apply conflict resolution techniques to resolve a simulated interpersonal conflict.                                                     | - | - | - | - | 1 | - | - | - | ı | - | - | - |
|    |         | g and                                            | CO 1 | Define water and waste water treatment plant process and design                                                                         | 1 | 2 | - | - | - | - | - | - | ı | - | • | 1 |
|    | 4       | nitorinç<br>ab                                   | CO 2 | Discuss various methods to measure air, noise, water and waste water pollution.                                                         | 2 | 2 | 2 | - | - | - | - | 1 |   | - | - | 1 |
| 63 | 7CE3-24 | Environmental Monitoring and<br>Design Lab       | CO 3 | Apply various equipment, technology to demonstrate air, noise pollution, water and waste water treatment process.                       | 2 | 2 | 2 | 2 | - | - | - | - | - | - | - | 2 |
|    |         | Environr                                         | CO 4 | Examine and analyze the quantification of air and noise pollutants, water and waste water pollution.                                    | 2 | 2 | 2 | 2 | - | - | - | - | - | - | - | 2 |
|    |         |                                                  | CO 1 | Understand organizational issues including teams, attitudes and define work-life balance and its impact on organizations and employees. | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 3 | 2 | 2 | 2 |
| 64 | 7CE7-30 | Practical Training                               | CO 2 | Understand of current technologies in field of civil engineering and  Analyze problems and suggest possible solutions.                  | 1 | 1 | 1 | 1 | - | 2 | 1 | 2 | 3 | 2 | 2 | 2 |
|    | 1~      | Pract                                            | CO 3 | Develop effective group communication, presentation, self-management and report writing skills.                                         | 1 | 1 | 1 | 1 | ı | 2 | 1 | 2 | 3 | 2 | 2 | 2 |
|    |         |                                                  | CO 4 | Summarize and illustrate the work done during the internship, both in writing and through oral presentation.                            | - | - | - | - | ı | - | - | ı | ı | - | ı | - |
|    |         |                                                  | CO 1 | Build a technical document by organizing a detailed literature survey.                                                                  | 2 | 2 | - | - | - | - | - | - | - | - | 3 | - |
| 65 | 7CE7-40 | Seminar                                          | CO 2 | Compare different concepts available in literature about a specific topic                                                               | 1 | 3 | - | - | - | - | - | - | - | - | 2 | - |
|    | 7CE     | Sei                                              | CO 3 | Conclude with literature gap about the topic and recommendations for future scope.                                                      | 1 | 3 | - | - | ı | - | - | - | - | - | 2 | - |
|    |         |                                                  | CO 4 | Develop effective presentation, self-<br>confidence and writing skills                                                                  | - | - | - | - | - | - | - | - | - | - | - | - |

|    |           |                                                             | CO 1 | Evaluate the financial evaluation of projects.                                                                                                                                                          | 2 | 2 | _ | _ | _ | _ | - | _ | _ | _ | 3 | _ |
|----|-----------|-------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
|    |           |                                                             | CO 2 | Analyze the project scheduling of PERT, CPM and other.                                                                                                                                                  | 1 | 3 | - | - | - | - | - | - | - | - | 2 | - |
|    | 1-01      | əct                                                         | CO 3 | Understand the cost and time control.                                                                                                                                                                   | 1 | 3 | _ | _ | _ | _ | _ | _ | _ | _ | 2 |   |
| 66 | 8CE3-01   | Project                                                     | CO 4 | Understand contract management and dispute settlement.                                                                                                                                                  | 1 | 2 | - | - | - | - | - | - | - | - | 3 | - |
|    |           |                                                             | CO 5 | Understand the safety measure and use of software in safety & monitoring of project.                                                                                                                    | - | - | - | - | - | 3 | 2 | - | - | 1 | 1 | - |
|    |           | tics<br>II)                                                 | CO 1 | Understanding of Big Data and their needs in Industry.                                                                                                                                                  | 3 | - | - | - | - | - | - | - | - | - | - | - |
| 67 | 8CS6-60.1 | Analy<br>Elective                                           | CO 2 | Designing of Hadoop and Google File System.                                                                                                                                                             | - | 3 | - | - | ı | - | - | - | ı | 1 | ı | - |
|    | 8CS       | Big Data Analytics<br>(Open Elective-II)                    | CO 3 | Analysis of Map Reduce and their basic programs map reduce.                                                                                                                                             | - | - | 3 | - | - | - | - | - | - | • | • | - |
|    |           | )<br>B                                                      | CO 4 | Design a Hive Data system.                                                                                                                                                                              | - | - | - | 3 | - | - | - | - | - | - | - | - |
|    |           | ıf India                                                    | CO1  | To Determine and analyse the domain name system (DNS) in internet and various cybercrime offence in cyber space.                                                                                        | 3 | - | - | - | ı | - | - | - | ı | ı | ı | - |
|    | .2        | oer Law o<br>ve-II)                                         | CO2  | To understand the concept of Intellectual Property and Intellectual Property Rights with special reference to India and abroad.                                                                         | - | - | - | - | - | - | - | 3 | 1 | 1 | ı | - |
| 68 | 8CS6-60.2 | IPR, Copyright and Cyber Law of India<br>(Open Elective-II) | CO3  | To Apply intellectual property law principles including the copyright law, patents law, designs and trademarks, to real problems and analyse the social impact of intellectual property law and policy. | - | - | - | - | - | 3 | - | - | - | ı | ı | - |
|    |           | IPR, C                                                      | CO4  | To Study the Jurisdiction Issues in Cyber Space and Competition Law in India.                                                                                                                           | - | 2 | - | - | - | - | - | - | - | 1 | 1 | - |
|    |           | ide                                                         | CO1  | Understand the current Energy Scenarios in India.                                                                                                                                                       | 3 | - | - | - | - | - | - | - | - | 1 | 1 | - |
| 69 | 8EE6-60.1 | dit and Demand side<br>lanagement                           | CO2  | Illustrate the energy auditing of motors, lighting system and building, by appropriate analysis methods through survey instrumentations.                                                                | 3 | 3 | - | - | - | - | - | - | - | - | - | - |
|    | 8EE6      | ∆udit ar<br>Manaç                                           | CO3  | Understand the Electrical-Load Management and Demand side Management.                                                                                                                                   | 3 | 2 | 2 | - | - | - | - | - | - | 1 | 1 | - |
|    |           | Energy Auc<br>Mi                                            | CO4  | Apply the Energy Conservation in transport, agriculture, household and commercial sectors.                                                                                                              | 3 | 2 | 2 | 1 | ı | - | - | - | ı | ı | ı | - |
|    |           |                                                             | CO1  | Learn about soft computing techniques and their applications.                                                                                                                                           | 2 | 2 | 3 | - | - | - | - | - | - | - | - | - |
|    | 2         | ting                                                        | CO2  | Analyze various neural network architectures.                                                                                                                                                           | 2 | 2 | 3 | - | - | - | - | - | - | - | - | - |
| 70 | 8EE6-60.2 | Soft Computing                                              | CO3  | Define the fuzzy systems                                                                                                                                                                                | - | - | 3 | - | - | - | - | - | - | - | - | - |
|    | 8EI       | Soft C                                                      | CO4  | Understand the genetic algorithm concepts and their applications                                                                                                                                        | 3 | 2 | 3 | - | - | - | - | - | - | - | 1 | - |
|    |           |                                                             | CO5  | Identify and select a suitable Soft Computing technology to solve the problem.                                                                                                                          | 3 | 3 | 3 | - | - | - | - | - | - | - | 1 | - |

|    |           | (2                                              | 1    |                                                                                                                                                                                               |   |   |   |   |   |   |   |   |   |   |   | , |
|----|-----------|-------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
|    |           | ı Analysis                                      | CO1  | Student will able to define the simulation modeling and analyze the practical situations in organizations.                                                                                    | 3 | - | - | - | - | - | - | - | - | - | - | - |
| 74 | -60.2     | ing anc                                         | CO2  | Examine the random numbers and random variates approach in different applications.                                                                                                            | 2 | - | - | - | - | - | - | - | - | - | - | - |
| 71 | 8ME6-60.2 | Model                                           | CO3  | Investigate the sensitivity of simulation solutions for realistic problems.                                                                                                                   | - | 3 | - | - | - | - | - | - | - | - | - | - |
|    |           | Simulation Modeling and Analysis                | CO4  | Evaluate the solution based on realistic situation including existing standards and propose the suitable solution with justification.                                                         | - | 3 | - | - | - | - | - | - | - | - | - | - |
|    |           |                                                 | CO1  | Describe the characteristics of different types of optimization techniques with the appropriate tools to be used in type problem.                                                             | 2 | - | - | - | - | - | - | - | - | - | - | - |
|    | -60.1     | Research                                        | CO2  | Examine the concept of optimization techniques to build and solve different types of industrial problems, by using appropriate techniques.                                                    | 3 | - | - | - | - | - | - | - | - | - | - | - |
| 72 | 8ME6-60.1 | Operations Research                             | CO3  | Investigate the sensitivity of a solution for different variables and propose recommendations in language understandable to the decision-makers in realistic problem.                         | - | 3 | - | - | - | - | - | - | - | - | - | - |
|    |           |                                                 | CO4  | Evaluate the solution based on realistic situation including existing standards and propose the suitable solution with justification.                                                         | - | - | 3 | - | - | - | - | - | - | - | - | - |
|    |           | ons of RF                                       | CO 1 | Understanding of basic concepts and Principles of EM wave, propagation reflection and transmission. [Understanding]                                                                           | 3 | 2 | - | 2 | - | - | - | - | - | - | - | 3 |
| 73 | 8EC6.60.1 | strial and Medical applications of RF<br>Energy | CO 2 | Apply the knowledge for interest in complex dielectric constant, dipolar loss mechanism and design mechanism to understand the effect of rate rise of temperature. [Applying & Understanding] | 2 | 3 | - | 2 | - | - | - | - | - | 2 | - | 3 |
|    | ω         | and M                                           | CO 3 | Analyze the structure of RF heating in industrial application. [Analyzing]                                                                                                                    | 2 | 3 | 2 | - | 2 | - | 2 | - | - | - | - | 3 |
|    |           | Industrial                                      | CO 4 | Design of Hazards and safety standards in various engineering problem. [Create & Design].                                                                                                     | - | 3 | 2 | - | - | - | - | - | - | 2 | - | 3 |
|    |           |                                                 | CO 1 | Understand the fundamentals of robotics and its components, methods of linear motion into rotary motion and vice-verse. [Understanding]                                                       | 3 | - | - | - | - | - | - | - | - | - | - | - |
| 74 | 8EC6.60.1 | Robotics and Control                            | CO 2 | Apply the appropriate techniques for movement of robotic joints with computers/microcontrollers. [Applying & Understanding]                                                                   | 3 | 3 | 2 | - | - | - | - | - | - | - | - | - |
|    | 8E        | Robotic                                         | CO 3 | Analyze parameters required to be controlled in a robot for specific application. [Analyzing]                                                                                                 | 3 | 3 | - | 2 | - | - | - | - | - | - | - | - |
|    |           | <u>u</u>                                        | CO 4 | Design and develop small automatic / autotronics applications with the help of Robotics for solving the real-life problems [Create & Design].                                                 | - | - | 3 | 3 | 3 | - | - | - | - | - | - | - |

|    |         | struction                                           | CO 1 | Understand the capital budgeting, Contracts,<br>Tenders and related terms, Arbitration, PERT<br>and CPM, PPP model       | 3 | 3 | 1 | 1 | - | 1 | - | - | - | - | - | - |
|----|---------|-----------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
| 75 | 8CE3-21 | t Planning & Cons<br>Management Lab                 | CO 2 | Analysis the capital budgeting, Estimation of various items, Network analysis, Project based on PPP model.               | 2 | 1 | - | 1 | 2 | 1 | 1 | 3 | - | 2 | 3 | 1 |
|    | 8C      | l Project Planning & Construction<br>Management Lab | CO 3 | Prepare the bar chart diagram, Project Progress Network muster roll, measurement book, tender documents, Tender Notice.  | 2 | 2 | 3 | 1 | - | - | 1 | - | - | - | - | 1 |
|    |         | I Proj                                              | CO 4 | Develop the understanding about dispute settlement                                                                       | - | - | - | - | - | - | - | - | • | - | - | - |
|    |         | ub                                                  | CO 1 | Design of bituminous mixes, DLC and PQC as per relevant IS Code provisions.                                              | 1 | 2 | - | - | - | - | - | - | - | - | - | 1 |
| 76 | 8CE3-22 | Pavement Design                                     | CO 2 | Understand basics parameters and concepts of pavement design.                                                            | 2 | 2 | 2 | 1 | - | - | - | - | - | - | - | 1 |
| 10 | 8CE     | avemei                                              | CO 3 | Design of flexible pavement by various methods.                                                                          | 2 | 2 | 2 | 2 | - | - | - | - | • | - | - | 1 |
|    |         | Pe                                                  | CO 4 | Understand the specifications of low-cost roads/rural roads                                                              | 2 | 2 | 2 | 2 | 1 | - | - | - | ı | 1 | 1 | 1 |
|    |         |                                                     | CO 1 | Discover potential research areas and conduct a survey of several available literatures in the preferred field of study. | 1 | 1 | 1 | 1 | ı | 2 | 1 | 2 | 3 | 2 | 2 | 2 |
|    | 20      | *                                                   | CO 2 | Compare and contrast the several existing solutions for research challenge.                                              | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 3 | 2 | 2 | 2 |
| 77 | 8CE7-50 | Project                                             | CO 3 | Demonstrate an ability to work in teams and manage the conduct of the research study.                                    | 1 | 1 | 1 | 1 | - | 2 | 1 | 2 | 3 | 2 | 2 | 2 |
|    |         |                                                     | CO 4 | Formulate and propose a plan for creating a solution for the research plan identified.                                   | 1 | 1 | 1 | 1 | - | 2 | 1 | 2 | 3 | 2 | 2 | 2 |
|    |         |                                                     | CO 5 | Report and present the findings of the study conducted in the preferred domain.                                          | 1 | 1 | 1 | 1 | - | 2 | 1 | 2 | 3 | 2 | 2 | 2 |

### **Bachelor of Technology Electronics and Communication Engineering**

### **Program Name: Electronics and Communication Engineering**

Subject/Code No: Computer Architecture, 5EC3-01 LTP: 2+0+0 Semester: V
Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                                                                           | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand the principles of computer organization along with fundamental concepts pertaining to processor architecture, memory arrangement, and input-output mechanisms.                                                                               | 3   | 3   | •   | 2   | 1   | 1   | 1   | 1   | 1   | 1    | 1    | -    |
| CO2          | Examine the fundamental framework of a digital computer, including methods for adding and multiplying integers and floating-point figures using two's complement and IEEE floating-point notation. Delve into the organization of input-output systems. | 2   | 3   | -   | 2   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO3          | Critically assess arithmetic operations on both fixed and floating-point numbers within a computer, employing diverse algorithms such as the restoring method, microprogrammed control units, and DMA controllers.                                      | -   | 2   | -   | 3   | 3   | -   | -   | -   | -   | -    | -    | -    |
| CO4          | Formulate designs for elementary and intermediate RISC pipelines, encompassing considerations like the instruction set, functional units, and integral components of computers.                                                                         | -   | 3   | 3   | -   | -   | ı   | ı   | -   | -   | ı    | ı    | -    |

## Subject/Code No: Electromagnetics Waves, 5EC3-02 LTP: 3+0+0 Semester: V Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                         | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Introduce the idea of the number system, Boolean Algebra, combinational and sequential circuits, semiconductor memories, and the flow of VLSI design. | ı   | 2   | 3   | ı   | 2   | ı   | ı   | ı   | ı   | -    | -    | -    |
| CO2          | Utilize suitable technology to enhance circuit performance, leading to smoother and faster operations, thereby conserving time and energy.            | ı   | 2   | 2   | ı   | 2   | ı   | ı   | ı   | ı   | -    | -    | -    |
| CO3          | Examine the creation process and compromises within different digital electronic categories, aiming to achieve lower power usage and smaller sizes.   | 1   | 2   | 2   | 2   | 1   | 1   | 1   | ı   | ı   | 1    | 1    | -    |
| CO4          | Evaluate both synchronous and asynchronous sequential circuits, and cultivate the skill to design such circuits using VHDL.                           | 1   | 2   | 2   | 1   | 2   |     |     | 1   | ı   | -    | -    | -    |

# Subject/Code No: Control System, 5EC3-03 LTP: 3+0+0 Semester: V Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                                                                                                  | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Explain the fundamental notion of control systems encompassing both feedback and open-loop configurations. Explore time and frequency-based evaluations of system responses. Delve into state-variable examination, optimal control strategies, and nonlinear control systems. | 1   | 2   | 1   | 2   | ı   | ı   | ı   | ı   | ı   | ı    | ı    | ı    |
| CO2          | Resolve intricacies related to feedback control systems, time-based responses, frequency-based reactions, and state-variable analyses. Employ tools like Routh-stability criterion, root locus, polar plot, bode plot, Nyquist plots, and state models to ascertain stability. | 1   | 2   | 1   | 2   | 2   | -   | 1   | 1   | 1   | 1    | 1    | -    |
| CO3          | Assess the performance of diverse control systems by assessing their behavior in time-domain, frequency-domain, and through state-space analysis techniques.                                                                                                                   | 1   | 2   | -   | 2   | 2   | -   | 1   | 1   | -   | -    | -    | -    |
| CO4          | Formulate suitable compensatory mechanisms for typical control scenarios using both time and frequency response approaches.                                                                                                                                                    | -   | 2   | 2   | -   | 2   | -   | -   | -   | -   | -    | -    | -    |

# Subject/Code No: Digital Signal Processing, 5EC3-03 LTP: 3+0+0 Semester: V Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                    | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Elucidate the notion of sampling and its subsequent reconstruction. [Recall]                                                                                                                     | 1   | 2   | 2   | 2   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO2          | Elaborate on the Z-Transform, DFT, and FFT algorithms. [Comprehension]                                                                                                                           | 1   | 2   | 2   | 1   | 2   | -   | -   | -   | -   | -    | -    | -    |
| CO3          | Utilize the Z-Transform, DFT, and FFT algorithms to scrutinize Linear Shift-Invariant (LSI) systems. [Application and Analysis]                                                                  | 1   | 2   | 2   | -   | 2   | -   | -   | -   | -   | -    | -    | -    |
| CO4          | Formulate Infinite Impulse Response (IIR) and Finite Impulse Response (FIR) filters employing distinct techniques tailored for diverse Digital Signal Processing (D.S.P.) applications. [Design] | 1   | 1   | 2   | 1   | 2   | -   | -   | -   | -   | -    | -    | -    |

## Subject/Code No: Microwave Theory & Techniques, 5EC3-05 LTP: 3+0+0 Semester: V Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                                               | P01 | P02 | P03 | P04 | PO5 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Introduction to the fundamental ideas and tenets of microwave engineering.                                                                                                                                                  | 2   | 3   | 1   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO2          | Acquire insights into the functioning of electromagnetic waves and the construction of both active and passive microwave networks. Additionally, identify the distinct microwave parameters employed within these networks. | 1   | 2   | 2   | 2   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO3          | Examine the effectiveness of an impedance tuning network aimed at optimizing the transmission for satellite and RADAR communication.                                                                                        |     | 2   | 2   | 2   | -   | 2   | -   | -   | -   | ı    | ı    | -    |
| CO4          | Incorporate active and passive microwave components to construct a representative communication system, enabling an assessment of its impact on the human body.                                                             | -   | 2   | 2   | 2   | 1   | 2   | -   | -   | -   | -    | -    | -    |

Subject/Code No: Satellite Communication, 5EC5-13 LTP: 2+0+0 Semester: V
Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                        | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Introduction to the structure of satellite systems as a mechanism for achieving rapid, extended-range communication.                                                 | 1   | 2   | 3   | -   | -   | 3   | -   | -   | -   | -    | -    | -    |
| CO2          | Elaborate on diverse facets linked to satellite systems, including orbital equations, satellite subsystems, link budgeting, modulation, and multiple access methods. | -   | 2   | 2   | 2   | 2   | 2   | -   | -   | -   | -    | -    | -    |
| CO3          | Examine the array of access strategies employed in satellite communication.                                                                                          | -   | 3   | -   | 2   | 1   | 3   | ı   | -   | -   | 1    | 1    | -    |
| CO4          | Solve numerical scenarios concerning orbital motion and the formulation of a link budget based on specified parameters and conditions.                               | -   | 3   | 3   | 2   | ,   | -   | 1   | -   | -   | 1    | 1    | -    |

Subject/Code No: RF Simulation Lab, 5EC3-21 LTP: 0+0+3 Semester: V

|              | Course Outcome mapping                                                                                                                    | ***** | ;   | <u> </u> | Outo | 01110 |     |     |     |     |      |      |      |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|----------|------|-------|-----|-----|-----|-----|------|------|------|
| CO<br>Number | CO Definition                                                                                                                             | P01   | P02 | PO3      | P04  | P05   | 90d | 70q | P08 | 60d | PO10 | P011 | P012 |
| CO1          | Elaborate upon fundamental microwave network theory and the application of scattering matrices.                                           | -     | 3   | 2        | -    | 3     | -   | -   | -   | ı   | ı    | ı    | -    |
| CO2          | Utilizing microwave energy for targeted heating of specific regions or objects enhances the performance of electronic devices.            | -     | 3   | -        | 3    | 3     | -   | 1   | -   | ı   | ı    | ı    | -    |
| CO3          | Exhibit a comprehensive understanding of essential radio frequency (RF) concepts, RF amplification, and RF filtering.                     | -     | 3   | -        | 3    | -     | -   | -   | -   | -   | -    | -    | -    |
| CO4          | Devise RF amplifier configurations employing microwave bipolar junction transistors (BJTs) and microwave field-effect transistors (FETs). | -     | 3   | 3        | 3    | -     | -   | -   | -   | -   | -    | -    | -    |
| CO5          | Create and manufacture microwave components or devices utilizing microstrip technology.                                                   | -     | -   | 3        | -    | 3     | -   | 1   | -   | 1   | ı    | 1    | -    |

## Subject/Code No: Digital Signal Processing Lab, 5EC3-22 LTP: 0+0+3 Semester: V Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                     | P01 | P02 | PO3 | P04 | PO5 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Categorize signals and employ diverse signal manipulations.                                                                       | -   | 3   | 1   | 3   | -   | -   | 1   | 1   | 1   | -    | -    | -    |
| CO2          | Investigate assorted attributes of digital systems.                                                                               | -   | 3   | -   | 3   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO3          | Construct Simulink models and graphical user interfaces (GUIs) for both analog and digital modulation methods.                    | 2   | -   | 3   | -   | 3   | -   | -   | -   | -   | -    | -    | -    |
| CO4          | Formulate a variety of Digital Signal Processing (DSP) algorithms using the MATLAB software package for distinct transformations. | -   | -   | 3   | -   | 3   | -   | -   | 1   |     | 1    | -    | -    |
| CO5          | Formulate, examine, and execute Analog & Digital filters through MATLAB programming.                                              | -   | -   | 3   | -   | 3   | -   | -   | ı   | 1   | ı    |      | -    |

## Subject/Code No: Microwave Lab, 5EC3-23 LTP: 0+0+3 Semester: V Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                  | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Elaborate upon the fundamental idea behind microwave component mechanisms utilized in wired communication systems.             | 2   | 3   | -   | -   | -   | 1   | 1   | -   | 1   | 1    | 1    | -    |
| CO2          | Construct linear and non-linear data structures through the utilization of linked lists.                                       | -   | -   | 3   | -   | 3   | -   | -   | -   | 1   | 1    | 1    | -    |
| CO3          | Investigate the characteristics of distinct microwave parameters, considering their intrinsic traits.                          | -   | 3   | -   | 3   | -   | -   | -   | -   | 1   | 1    | 1    | -    |
| CO4          | Formulate an assessment of and design real-time application-oriented microwave waveguides intended for communication purposes. | 1   | 3   | 3   | 3   | -   | -   | -   | -   | ı   | ı    | ı    | -    |

## Subject/Code No: Industrial Training, 5EC7-30 LTP: 0+0+1 Semester: V Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                 | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Engage in industrial projects as part of the industrial training experience.                                  | -   | 2   | -   | 2   | -   | 1   | 1   | -   | 2   | 1    | -    | -    |
| CO2          | Collaborate with professionals in the industry and adhere to established engineering protocols and standards. | 2   | -   | 1   | -   | -   | 2   | -   | -   | 2   | -    | -    | -    |
| CO3          | Cultivate understanding of typical workplace conduct and enhance interpersonal and teamwork proficiencies.    | -   | 3   | -   | -   | -   | -   | 1   | -   | 3   | -    | -    | -    |
| CO4          | Generate proficient work reports and deliver well-structured presentations.                                   | -   | -   | -   | -   | -   | -   | -   | 3   | 3   | 1    | 3    | -    |

## Subject/Code No: Power Electronics, 6EC3-01 LTP: 2+0+0 Semester: VI Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                       | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Elaborate on the fundamental functioning and contrast the efficiency of different Power Semiconductor Devices, passive components, and switching circuits.                                          | 1   | 3   | -   | 3   | -   | -   | 1   | ,   | ,   | ,    | ,    | -    |
| CO2          | Elucidate the operation of step-up and step-down choppers, power supplies, and Buck-Boost converters through an understanding of the fundamental operational traits of power semiconductor devices. | 1   | 2   | -   | 2   | 2   | 1   | 1   | 1   | 1   | 1    | 1    | -    |
| CO3          | Formulate typical alternative approaches and choose appropriate power converters for the regulation of electric motors and other industrial-grade equipment.                                        | -   | 3   | 3   | 3   | -   | -   | -   | -   | -   | -    | 1    | -    |
| CO4          | Design and assess Controlled Converters for both single-phase and three-phase systems, as well as Voltage and Current Source Inverters.                                                             | -   | 3   | 3   | 3   | -   | -   | -   | -   | -   | -    | -    | -    |

## Subject/Code No: Computer Network, 6EC3-02 LTP: 3+0+0 Semester: VI Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                                                                    | P01 | P02 | P03 | P04 | PO5 | P06 | P07 | PO8 | P09 | PO10 | P011 | P012 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Capable of acquiring and dissecting the principles behind layered protocol architecture; skillful in recognizing and detailing the system functions within the accurate protocol strata, while also explaining the interplay between these layer | 1   | 2   | 2   | 2   | ı   | 1   | ı   | 1   | ı   | ı    | ı    | -    |
| CO2          | Resolve mathematical quandaries to grasp datalink and network protocols more comprehensively.                                                                                                                                                    | 1   | 2   | 2   | 2   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO3          | Utilize network layer protocols and compute the requisite count of subnets for a given network.                                                                                                                                                  | -   | 2   | 1   | 2   | 2   | -   | -   | -   | -   | -    | -    | -    |
| CO4          | Analyze the dependability of data transmission over<br>the transport layer in the context of bit errors within<br>a lossy channel scenario.                                                                                                      | 2   | 2   | 1   | 2   | -   | -   | -   | -   | -   | -    | -    | -    |

## Subject/Code No: Fiber Optics Communications, 6EC3-03 LTP: 3+0+0 Semester: VI Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                                                                                                      | P01 | P02 | P03 | P04 | PO5 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understanding the fundamental ideas and fundamental principles of Fiber Optics Communication.                                                                                                                                                                                      | 2   | 2   | -   | 2   | -   | 2   | -   | -   | -   | -    | -    | -    |
| CO2          | Acquiring insight into the functioning of fiber optic communication and applying this understanding to construct an optical measurement setup. This arrangement will enable the measurement of various crucial factors, including numerical aperture, dispersion, and attenuation. | 2   | 2   | 2   | 2   | 1   | 1   | ı   | ı   | ı   | ı    | ı    | ı    |
| CO3          | Evaluating the composition of diverse categories of optical transmitters and receivers for the purpose of setting up optical connections.                                                                                                                                          | 1   | 2   | 2   | 2   | -   | -   | -   | ı   | -   | ı    | ı    | -    |
| CO4          | Devising systems for WDM and DWDM, and additionally assessing the efficacy of active and passive optical components.                                                                                                                                                               | 1   | 3   | 3   | 3   | 1   | -   | -   | -   | -   | -    | -    | -    |

## Subject/Code No: Antennas and Propagation, 6EC3-03 LTP: 3+0+0 Semester: VI Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                     | P01 | P02 | PO3 | P04 | P05 | 90d | 70d | P08 | P09 | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Elaborate on the fundamental notion of antennas and their practical uses.                                                                         | 2   | 2   | ı   | ı   | ı   | 2   | ı   | -   | ı   | ı    | ı    | -    |
| CO2          | Determine an antenna's radiation pattern to deduce<br>both its physical configuration and the wavelength<br>of the emitted electromagnetic waves. | -   | 2   | 2   | 2   | -   | -   | 1   | -   | -   | 1    | 1    | -    |
| CO3          | Assess the radiation patterns exhibited by different types of antennas.                                                                           | 1   | 2   | -   | 2   | -   | 1   | 1   | -   | -   |      | 1    | -    |
| CO4          | Devise a Smart Antenna system tailored for real-time applications.                                                                                | 2   | 2   | 2   | 2   | -   | 2   | -   | -   | -   | ı    | 1    | -    |

## Subject/Code No: Information Theory and Coding, 6EC3-05 LTP: 3+0+0 Semester: VI Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                            | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Elaborate on the basics of information theory, including concepts like uncertainty, information, entropy, channel capacity, and the necessity of coding. | 1   | 2   | 1   | 2   | 2   | -   | 1   | 1   | -   | ı    | ı    | -    |
| CO2          | Employ coding methods for both sources and channels, such as Huffman, Lempel-Ziv, and Block codes.                                                       | 1   | 2   | ı   | 2   | 2   | -   | ı   | ı   | -   | ı    |      | -    |
| CO3          | Assess diverse coding and decoding strategies for multiple applications like compression and data transmission.                                          | 1   | 3   | 3   | 3   | 3   | -   | -   | -   | -   | 1    | -    | -    |
| CO4          | Formulate streamlined codes for error detection and correction techniques.                                                                               | 1   | 2   | 2   | 2   | 2   | -   | ı   | 1   | -   | ı    | -    | -    |

## Subject/Code No: Introduction to MEMS (Professional Elective-II), 6EC5-11 LTP: 3+0+0 Semester: VI Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                                               | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Grasp the underlying concepts encompassing the basic principles, configuration, production, characteristics, and methodology behind MEMS/NEMS, encompassing Micro devices, Micro systems, and Micromachining methodologies. | 1   | 3   | -   | 3   | -   | 1   | -   | -   | -   | -    | 1    | -    |
| CO2          | Utilize MEMS technology to craft minute, accurate entities.                                                                                                                                                                 | 1   | 2   | 2   | 2   | 2   | -   | -   | -   | -   | •    | -    | -    |
| CO3          | Investigate the impact of scaling on Micro/Nano Sensors within distinct applications.                                                                                                                                       | 2   | 2   | -   | 2   | -   | 2   | -   | -   | -   | -    | -    | -    |
| CO4          | Formulate and execute the blueprint and construction of Micro/Nano devices, along with Micro/Nano systems, to address tangible real-world predicaments.                                                                     | 2   | 2   | 2   | 2   | -   | 2   | -   | -   | -   | -    | -    | -    |

## Subject/Code No: Nano Electronics (Professional Elective-II), 6EC5-12LTP: 3+0+0 Semester: VI Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                                                        | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Explain and understand the Schrodinger equation, CMOS Scaling, the nano scale MOSFET, Finfets, Vertical MOSFETs, Resonant Tunneling Diode, Coulomb dots, Quantum blockade, Single electron transistors, Carbon nanotube electronics. | 1   | 3   | -   | 3   | -   | -   | -   | -   | -   | 1    | 1    | -    |
| CO2          | Use different methods to get energy, wave function, propagation constant, and channel length in MOSFETs and CMOS.                                                                                                                    | 1   | 2   | 2   | 2   | ı   | -   | ı   | -   | -   | ı    | -    | -    |
| CO3          | Analyze and identify the changes in the parameters like inter-atomic distance, 2D and 3D structure, Scaling of CMOS.                                                                                                                 | 2   | 2   | 3   | 2   | '   | -   |     | -   | -   | ı    | -    | -    |
| CO4          | Synthesis the structure of CMOS, Finfet, Vertical MOSFET and Carbon nano tubes.                                                                                                                                                      | 2   | 2   | 2   | 2   | ı   | -   | ı   | -   | -   | 1    | -    | -    |

# Subject/Code No: Computer Network Lab, 6EC3-21 LTP: 0+0+3 Semester: VI Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                             | P01 | P02 | P03 | P04 | P05 | 90d | 70 <b>d</b> | P08 | P09 | PO10 | P011 | PO12 |
|--------------|-----------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-------------|-----|-----|------|------|------|
| CO1          | Understand the principles of TCP/IP protocols, layered architecture, as well as LAN, MAN, and WAN setups. | 1   | 3   | ı   | 3   | ı   | 1   | ı           | 1   | ı   | 1    | ı    | -    |
| CO2          | Apply data structures in networking, incorporating weighted and unweighted graphs.                        | -   | 3   | 1   | 1   | 3   | 3   | 1           | -   | 1   | -    | 1    | -    |
| CO3          | Elaborate on the simulation of Queuing Theory.                                                            | -   | 3   | 1   | 3   | ı   | -   | ı           | -   | ı   | -    | ı    | -    |

# Subject/Code No: Antenna and Wave Propagation Lab, 6EC3-22 LTP: 0+0+2 Semester: VI Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                       | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Grasp the fundamental idea behind antenna radiation mechanisms employed in wireless communication.                                                                                                  | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO2          | Employ various communication modes tailored to specific applications such as mobile and satellite contexts.                                                                                         | -   | 3   | -   | -   | 1   | 3   | 1   | 1   | ı   | 1    | 1    | -    |
| CO3          | Examine and detect issues within MOS and CMOS devices (such as assessing gate delay, transistor dimensions, power usage, as well as performance under extreme pressure and temperature conditions). | -   | 3   | 1   | 3   | ı   | ı   | ı   | ı   | ı   | 1    | ı    | -    |
| CO4          | Investigate the characteristics of diverse antenna types with regards to their inherent parameters.                                                                                                 | 3   | -   | -   | 3   | -   | -   | -   | -   | -   | -    | -    | -    |

# Subject/Code No: Electronics Design Lab, 6EC3-23 LTP: 0+0+3 Semester: VI Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                             | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Grasp the fundamental principles and practical uses of Op-amp IC (731), 555 timer IC, Cathode Ray Oscilloscope (CRO), breadboard, and function generator. | 3   | 3   | -   | 1   | 3   | -   | -   | 1   | -   | ı    | ı    | -    |
| CO2          | Utilize distinct design approaches on a breadboard employing IC-731 and IC-555 for various functionalities.                                               | 2   | 3   | 3   | -   | 3   | -   | -   | -   | -   | -    | -    | -    |
| CO3          | Examine the performance of diverse circuit configurations involving IC-731 and IC-555 across a spectrum of applications and inputs.                       | 3   | 3   | -   | -   | 3   | -   | -   | -   | -   | -    | -    | -    |
| CO4          | Formulate circuit diagrams on a breadboard utilizing IC-731 and IC-555 to cater to distinct application requirements.                                     | 2   | -   | 2   | 2   | 2   | -   | -   | -   | -   | -    | -    | -    |

Subject/Code No: Power Electronics Lab, 6EC3-24 LTP: 0+0+2 Semester: VI Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                           | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Comprehend AC voltage regulation through TRIAC, antiparallel thyristors, TRIAC and DIAC, in addition to generating pulses using the DSP/FPGA platform.                                                  | 3   | 1   | 1   | 1   | 3   | 1   | 1   | ı   | ı   | ı    | ı    | -    |
| CO2          | Comprehend AC voltage regulation through TRIAC, antiparallel thyristors, TRIAC and DIAC, in addition to generating pulses using the DSP/FPGA platform.                                                  | 3   | -   | -   | -   | 3   | -   | -   | -   | ı   | -    | ı    | -    |
| CO3          | Explore single-phase bridge converters, single-phase cycloconverters, and single-phase dual converters, alongside direct current (DC) motor speed management.                                           | 2   | 3   | 1   | -   | 1   | -   | -   | 1   | ı   | ı    | ı    | -    |
| CO4          | Execute experiments encompassing single-phase PWM inverters, buck, boost, and buck-boost regulators.                                                                                                    | 3   | -   | 3   | -   | 1   | -   | -   | ı   | ı   | ı    | ı    | -    |
| CO5          | Implement velocity regulation of a DC motor employing a chopper, and regulate induction motors via single-phase AC voltage regulators, coupled with open-loop and closed-loop motor control strategies. | -   | -   | -   | 3   | 3   | -   | -   | -   | -   | -    | -    | -    |

Subject/Code No: VLSI Design, 7EC5-11 LTP: 3+0+0 Semester: VII Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                                                                                                                                                  | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Comprehend and elucidate diverse digital components, such as MOSFET, NMOS inverter, PMOS inverter, CMOS, CMOS inverter, logic gates, Clocked CMOS (C2MOS) logic, DOMINO logic, NORA logic, NP(ZIPPER) logic, and PE (pre-charge and evaluation) logic. Gain insight into fundamental memory circuits, including SRAM and DRAM. | 1   | 2   | 1   | 2   | 2   | -   | -   | -   | -   | -    | -    | -    |
| CO2          | Employ various technical approaches to acquire MOSFET parameters, encompassing channel length modulation, higher-order effects, model parameters, drain-source current relationship, and body effect.                                                                                                                          | 1   | 2   | 2   | 2   | 2   | -   | -   | -   | -   | -    | -    | -    |
| соз          | Apply techniques to extract parameters from CMOS devices, like inverter parameters, pull-up and pull-down ratios, and noise margins.                                                                                                                                                                                           | 2   | ı   | 3   | ı   | 3   | ı   | ı   | ı   | ı   | ı    | ı    | -    |
| CO4          | Conduct analysis to identify issues within MOS and CMOS devices, such as estimating gate delay, transistor sizing, power dissipation, overpressure, and temperature-related concerns.                                                                                                                                          | 2   |     | 3   | -   | 3   | ı   | ı   | -   | 1   | ı    | ı    | -    |
| CO5          | Generate VHDL code for both combinational and sequential components. Devise layouts and stick diagrams for MOSFET, CMOS inverters, as well as any Boolean expressions, and explore distinct fabrication methods for NMOS and CMOS technologies.                                                                                | 2   | 2   | 2   | -   | 2   | -   | -   | -   | -   | -    | -    | -    |

### Subject/Code No: CMOS Design, 7EC5-13 LTP: 3+0+0 Semester: VII Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Elaborate on the manufacturing procedure and characteristics of MOS devices. | 2   | 2   | 2   | -   | -   | -   | -   | 1   | ı   | ı    | ı    | -    |
| CO2          | Grasp the necessity of hardware description language and its attributes.     | 1   | 2   | 1   | 2   | -   | ı   | 1   | ı   | ı   | ı    | ı    | -    |
| CO3          | Investigate the influence of scaling on MOS circuits.                        | 1   | 2   | -   | 2   | 1   | 1   | -   | ı   | ı   | ı    | 1    | -    |
| CO4          | Formulate both combinational and sequential circuits utilizing VHDL.         | 2   | 1   | 2   | -   | 2   | -   | -   | -   | -   | -    |      | _    |

### Subject/Code No: VLSI Design Lab, 7EC3-21 LTP: 0+0+3 Semester: VII Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                     | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Grasp the steps involved in the physical design workflow of Digital Integrated Circuits.                                          | 1   | 3   | 3   | 1   | ı   | 1   | 1   | ı   | -   | -    | 1    | -    |
| CO2          | Outline the method for creating programmable circuits.                                                                            | 1   | 3   | 3   | ı   | ı   | ı   | ı   | ı   | -   | •    | ı    | -    |
| СОЗ          | Display proficiency in utilizing diverse Electronic Design Automation (EDA) tools for designing digital systems.                  | 3   | 3   | ı   | ı   | თ   | ı   | ı   | ı   | 1   | ı    | ı    | -    |
| CO4          | Analyse a range of combinational and sequential circuits using VHDL on an FPGA platform.                                          | -   | 3   | ı   | -   | 3   | 1   | 1   | ı   |     | ı    | -    | -    |
| CO5          | Execute the schematic and layout design for different digital CMOS logic circuits using Electronic Design Automation (EDA) tools. | 2   | -   | 2   | -   | 2   | -   | -   | -   | -   | -    | -    | -    |

### Subject/Code No: Advance Communication Lab (MATLAB Simulation), 7EC3-22 LTP: 0+0+2 Semester: VII Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                 | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Devise and exhibit digital modulation methods.                                                                                                | -   | -   | 3   | -   | 3   | -   | 1   | 1   | 1   |      | -    | -    |
| CO2          | Illustrate and gauge wave propagation in microstrip antennas.                                                                                 | 3   | 3   | -   | -   | -   | 3   | -   | -   | -   | -    | -    | -    |
| CO3          | Examine the attributes of microstrip components and assess parameter measurements.                                                            | -   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO4          | Construct a model for an optical communication system and analyze its traits.                                                                 | -   | 3   | 3   | -   | -   | -   | -   | •   | -   | -    | -    | -    |
| CO5          | Execute simulations for digital communication principles, calculating and presenting diverse parameters along with graphical representations. | -   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | -    |

### Subject/Code No: Optical Communication Lab, 7EC3-23 LTP: 0+0+2 Semester: VII Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                             | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Elaborate on the principles governing optical sources and methods for power launching and coupling.                                                       | 3   | 3   | ı   | -   | ı   | 1   | 1   | ı   | -   | 1    | 1    | -    |
| CO2          | Contrast the attributes of fiber optic receivers.                                                                                                         | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO3          | Devise a fiber optic connection considering resource constraints.                                                                                         | 3   | -   | -   | -   | 3   | -   | -   | -   | -   | -    | -    | -    |
| CO4          | Display comprehension of optical fiber communication links, encompassing the architecture, signal propagation, and transmission traits of optical fibers. | 1   | -   | 3   | 3   | -   | -   | -   | -   | -   | -    | -    | -    |

### Subject/Code No: Industrial Training, 7EC7-30 LTP: 1+0+0 Semester: VII Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                        | P01 | P02 | P03 | P04 | P05 | 90d | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|----------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Observe and comprehend industrial processes.                         | ı   | 2   | 1   | 2   | ı   | 2   | ı   | 1   | ı   | ı    | ı    | -    |
| CO2          | Exhibit diverse industrial machinery.                                | 1   | 2   | 1   | 1   | ı   | 2   | ı   | 1   | ı   | ı    | ı    | -    |
| CO3          | Cultivate proficiency in report writing.                             | ı   | -   | ı   | ı   | ı   | ı   | ı   | 3   | ı   | 3    | ı    | -    |
| CO4          | Boost communication skills and self-assurance through presentations. | -   | -   | -   | 1   |     | -   | -   | 3   |     | 3    | 1    | -    |

### Subject/Code No: Seminar, 7EC7-30 LTP: 2+0+0 Semester: VII Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                 | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Recognize a real-time industrial or societal issue within the field of engineering to choose a seminar topic. | 3   | -   | -   | -   | -   | 3   | -   | -   | -   | -    | -    | -    |
| CO2          | Explore different documented solutions to engineering challenges across various societal contexts.            | 3   | -   | -   | -   | 1   | 3   | -   | -   | -   | -    | -    | -    |
| CO3          | Assess and evaluate the outcomes of the research conducted in the chosen domain.                              | -   | 3   | -   | 3   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO4          | Compile a proficient document incorporating personal insights and conclusions.                                | 1   | 3   | 2   | ı   | ı   | 1   | 1   | 3   | 1   | 1    | -    | -    |
| CO5          | Elevate communication process and self-assurance through the process of presenting the findings.              | -   | 3   | ı   | -   | 1   | 1   | 1   | ı   | 1   | 3    | -    | -    |

### Subject/Code No: Electrical Machines and Drive, 7EE6-60.1 LTP: 3+0+0 Semester: VII Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|--------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Comprehend the structural intricacies and operational principles of rotating electrical devices.             | 2   | -   | 2   | 2   | -   | -   | -   | -   | 1   | ı    | -    | -    |
| CO2          | Attain understanding regarding the operational principles and diverse facets of electric propulsion systems. | 1   | 2   | 1   | 2   | -   | 2   | -   | -   | -   | -    | 1    | 1    |
| CO3          | Evaluate different methods of controlling speed in various electric propulsion systems.                      | 1   | 2   | -   | 1   | -   | 2   | -   | -   | 1   | 1    | -    | 1    |
| CO4          | Cultivate expertise in designing speed and current control circuits for an electric propulsion system.       | 1   | -   | 2   | 2   | -   | 2   | -   | -   | 1   | 1    | -    | 1    |

Subject/Code No: Power Generation Sources, 7EE6-60.2 LTP: 3+0+0 Semester: VII Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                       | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|---------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Categorize and explain different types of renewable energy options. | -   | -   | 2   | 3   | 1   | 3   | 3   | -   | -   | 1    | -    | -    |
| CO2          | Anticipate potential sources of renewable energy.                   | -   | 2   | 2   | -   | -   | 2   | 2   | -   | -   | -    | -    | -    |
| CO3          | Provide visual representations of renewable energy alternatives.    | -   | 2   | 2   | 1   | ı   | 1   | -   | -   | -   | 1    | 2    | -    |
| CO4          | Restructure the array of energy sources.                            | -   | -   | 3   | -   | -   | 3   | 3   | -   | -   | -    | -    | -    |
| CO5          | Arrange renewable energy sources based on societal requirements.    | -   | -   | -   | 3   | -   | 3   | 3   | -   | -   | -    | -    | -    |

Subject/Code No: Environmental Impact Analysis, 7CE6-60.1 LTP: 3+0+0 Semester: VII Course Outcome Mapping with Program Outcome

|              |                                                                                                                                                                                               |     |     |     |     |     |     |     |     |     |      |      | -    |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO<br>Number | CO Definition                                                                                                                                                                                 | P01 | P02 | БОЗ | P04 | 504 | 90d | 704 | P08 | 60d | PO10 | P011 | P012 |
| CO1          | Explain the meanings of the terms utilized in Environmental Impact Assessment (EIA) and establish criteria for quality benchmarks pertaining to various elements of the environment.          | -   | 1   | 3   | 1   | -   | 3   | 3   | -   | 1   | 1    | 1    | -    |
| CO2          | Comprehend the fundamental notions concerning EIA, such as ecological disruption, consequences of contamination, and the significance of involving stakeholders throughout the EIA procedure. | ı   | 2   | ı   | ı   | ı   | 2   | 2   | 1   | ı   | ı    | ı    | -    |
| CO3          | Construct a structured framework for conducting an environmental impact assessment concerning a project or undertaking under consideration.                                                   | ı   | ı   | 2   | ı   | ı   | 2   | 2   | ı   | ı   | ı    | ı    | -    |
| CO4          | Evaluate diverse approaches and the ramifications associated with Environmental Impact Assessment (EIA), encompassing a range of methodologies and their respective impacts.                  | ı   | 3   | ı   | ı   | ı   | 3   | 3   | -   | ı   | ı    | ı    | -    |
| CO5          | Develop proficiency in deploying different searching<br>and sorting methods, and make informed decisions<br>regarding their selection based on specific<br>requirements.                      | -   | -   | 3   | 3   | '   | 3   | 3   | -   | -   | -    | ı    | -    |

### Subject/Code No: Disaster Management, 7CE6-60.2 LTP: 3+0+0 Semester: VII Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                                           | P01 | P02 | P03 | P04 | P05 | 90d | 70d | 80d | 60d | PO10 | P011 | P012 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Comprehend the notion of disasters, risks, hazards, capacity enhancement, dealing with catastrophes, and the regulations outlined in the disaster management act and policy within the context of India.                | -   | 3   | -   | -   | -   | 3   | 2   | ı   | 1   | 1    | ı    | 2    |
| CO2          | Elaborate on the idea of disasters, risks, and hazards, as well as the process of capacity development, strategies for managing crises, and the legal framework provided by India's disaster management act and policy. | -   | 2   | -   | 2   | -   | 2   | 2   | ·   | ı   | ı    | -    | 2    |
| CO3          | Categorize different types of disasters, associated risks, and potential hazards, while also exploring various methodologies for effectively managing these situations.                                                 | -   | -   | 2   | 2   | -   | 2   | 2   | -   | 1   | ,    | ,    | 2    |
| CO4          | Apply the principles of capacity building, disaster coping mechanisms, and the implementation of India's disaster management act and policy to practical scenarios.                                                     | -   | -   | -   | 3   | -   | 3   | 2   | -   | -   | -    | 1    | 2    |
| CO5          | Examine both natural and human-made disasters to gain a comprehensive understanding of their causes, impacts, and mitigation strategies.                                                                                | -   | 2   | -   | 2   | -   | 2   | 2   | -   | -   | -    | -    | 2    |

### Subject/Code No: Quality Management/ISO 9000, 7CS6-60.1 LTP: 3+0+0 Semester: VII Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                            | PO1 | P02 | P03 | P04 | P05 | 90d | P07 | PO8 | P09 | PO10 | PO11 | PO12 |
|--------------|----------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand the significance of quality control and how individuals can impact the level of quality.      | -   | 3   | -   | 3   | -   | 3   | -   | -   | -   | -    |      | -    |
| CO2          | Examine the constituents comprising a quality management framework and the function it serves.           | -   | 2   | -   | 2   | -   | 2   | -   | -   | -   | -    |      | -    |
| CO3          | Implement quality control methodologies to enhance computer-based systems.                               | -   | -   | 2   | 2   | 1   | 2   | 1   | 1   | 1   | 1    | _    | -    |
| CO4          | Devise diverse elements of a quality system to preempt failures and the need for subsequent corrections. | -   | -   | 2   | 2   | 1   | 2   | -   | -   | 1   | 1    |      | -    |

### Subject/Code No: Artificial Intelligence and Expert Systems, 8EC5-11 LTP: 3+0+0 Semester: VIII Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                        | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand the fundamentals of artificial intelligence (AI) and expert systems.                                                                      | -   | 3   | 1   | 3   | -   | -   | ı   | -   | ı   | ı    | -    | -    |
| CO2          | Utilize fundamental AI principles in solving problems, making inferences, perceiving information, representing knowledge, and facilitating learning. | -   | 2   | 2   | -   | 2   | 2   | -   | -   | -   | -    | -    | -    |
| CO3          | Display competence in employing the scientific method for machine learning models.                                                                   | -   | 2   | 2   | 1   | 2   | ı   | ı   | ı   | ı   | ı    | ı    | -    |
| CO4          | Delve into the fundamentals of Artificial Neural<br>Networks (ANN) and various optimization<br>techniques.                                           | -   | 2   | 2   | 2   | 2   | ı   | ı   | -   | ı   | ı    | ı    | -    |

### Subject/Code No: Digital Image and Video Processing, 8EC5-12 LTP: 3+0+0 Semester: VIII Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                               | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Comprehend the process of image creation and the significance of various color models.                                      | 1   | 3   | -   | -   | 3   | -   | -   | -   | -   | -    | -    | -    |
| CO2          | Calculate the impact of changes in intensity on an image and implement filtering in both the spatial and frequency domains. | 2   | 2   | -   | 2   | -   | 1   | -   | -   | -   | -    | -    | -    |
| CO3          | Explain methods for improving the quality of images and restoring those that are damaged in a deteriorated setting.         | 1   | 2   | 2   | -   | 2   | 1   | 1   | -   | -   | 1    | 1    | -    |
| CO4          | Evaluate the influence and necessity of morphological operations on an image, along with their practical uses.              | -   | 2   | -   | 2   | 2   | 2   | -   | -   | -   | -    | -    | -    |

## Subject/Code No: Simulation Modeling and Analysis, 8ME6-60.2 LTP: 3+0+0 Semester: VIII Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                       | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Provide a definition of simulation modeling and explore its application in real-life organizational scenarios.                      | -   | 3   | -   | -   | 3   | 3   | -   | -   | -   | -    | -    | -    |
| CO2          | Explore the utilization of random numbers and random variates methodology across various practical contexts.                        | -   | 2   | -   | -   | 2   | 2   | -   | -   | -   | -    | -    | -    |
| CO3          | Scrutinize the responsiveness of simulation-<br>generated solutions when dealing with authentic<br>challenges.                      | -   | -   | 2   | 2   | 2   | -   | -   | -   | -   | -    | -    | -    |
| CO4          | Elaborate on the interpretation of simulation models and their application in resolving crucial concerns within practical problems. | -   | 2   | 2   | -   | 2   | 2   | -   | -   | -   | -    | -    | -    |

### **Department of Electrical Engineering**

**Program Name: Electrical Engineering** 

Subject/Code No: Electrical Materials/5EE3-01 Semester: 5th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                                                                                                                        | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Learn about the concepts of Bonding and types of solids, Crystalline state and their defects, Classical theory of electrical and thermal conduction in solids, temperature dependence of resistivity, skin effect, Hall effect.                                                                      | 3   | 3   | 1   | 1   | ı   | -   | -   | -   | ı   | ı    | ı    | 3    |
| CO2          | Acquire knowledge of Dielectric Properties of Insulators in Static and Alternating field, Properties of Ferro-Electric materials, Polarization, Piezoelectricity, Frequency dependence of Electronic and Ionic Polarizability, Complex dielectric constant of non-dipolar solids, dielectric losses. |     | 2   | 1   | 1   | 1   | -   | 2   | -   | 1   | 1    | 1    | 2    |
| CO3          | Apply concepts of Magnetization of matter, Magnetic Material Classification, Ferromagnetic Origin, Curie-Weiss Law, Soft and Hard Magnetic Materials, Superconductivity and its origin, Zero resistance and Meissner Effect, critical current density.                                               | 3   | 3   | 1   | 1   | -   | -   | -   | -   | -   | 1    | 1    | 3    |
| CO4          | Acquire knowledge of Conductivity of metals Ohm's law and relaxation time of electrons, collision time and mean free path, electron scattering and resistivity of metals.                                                                                                                            | 3   | 2   | 2   | -   | -   | -   | -   | -   | 2   | -    | 2    | ı    |

Subject/Code No: Power System-I/5EE3-02 Semester: 5th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                        | P01 | P02 | P03 | P04 | P05 | 90d | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand the overall framework of the power system while taking various faults and their mitigation measures into account.         | 3   | 3   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO2          | Illustrate various electrical characteristics of transmission lines in transient, sub-transient, and steady state stability modes.   | 2   | 2   | 2   | 2   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO3          | Interpret the integration of distributed generation with grid while taking into account the protection system in real-time projects. | 2   | 2   | 2   | 1   | 1   | 1   | ı   | -   | 1   | ı    | ı    | -    |
| CO4          | Estimate the electrical machines parameters &insulation requirements under different stability modes.                                | 2   | 2   | 2   | 2   | 2   | 2   | -   | -   | -   | -    | -    | -    |

### Subject/Code No: Control System/5EE3-03 Semester: 5th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                 | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Utilize the core principles of both linear and nonlinear control systems to mathematically express their characteristics.                     | 1   | 2   | 2   | 2   | 2   | 2   | -   | -   | -   | -    | 1    | -    |
| CO2          | Compare and contrast the temporal and spectral reactions of systems that are Linear Time Invariant, examining their behaviors and properties. | 2   | 2   | 1   | 1   | -   | -   | -   | -   | -   | 1    | -    | 2    |
| CO3          | Evaluate the state space parameters within conventional control systems, considering their significance and impact.                           | 2   | 2   | 1   | 1   | -   | 1   | 1   | -   | 1   | 1    | 1    | 2    |
| CO4          | Devise diverse controllers by employing different stability criteria and requirements, addressing various conditions and specifications.      | 2   | 2   | 1   | 2   | 1   | -   | ı   | 1   | ı   | 1    | ı    | 2    |

### Subject/Code No: Microprocessor/ 5EE3-04 Semester: 5th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                    | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Elaborate the fundamental concepts of 8051 architecture, programming instructions, and 8051 interfacing schemes. | 2   | 2   | 2   | -   | ı   | ı   | ı   | -   | ı   | ı    | ı    | 2    |
| CO2          | Indicate the programming knowledge for external devices interfacing and serial communication                     | 1   | 1   | 1   | -   | -   | -   | -   | -   | -   | -    | 1    | 2    |
| CO3          | Understand the memory expansion and interfacing of peripheral device such as ADC, DAC, timers, counters, etc.    | 2   | 2   | 1   | 2   | 1   | 1   | 1   | -   | 1   | 1    | 1    | 2    |
| CO4          | Develop 8051 programs for controlling external/interfacing devices for solving a particular task/problem.        | 1   | 2   | 1   | 1   | -   | -   | -   | -   | -   | -    | -    | 2    |

### Subject/Code No: Electrical Machine Design/5EE3-05 Semester: 5th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                 | P01 | P02 | P03 | P04 | P05 | 90d | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|-----------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Interpret the characteristics of engineering materials used for electrical machine designing. | 2   | 2   | 1   | ı   | ı   | 1   | ı   | -   | -   | ı    | ı    | 1    |
| CO2          | Infer the performance characteristics of electrical Machines with the specified constraints.  | 2   | 2   | 2   | 1   | -   | -   | -   | -   | -   | -    | 2    | 2    |
| CO3          | Relate electrical machine models in computer aided design software.                           | 2   | 2   | 2   | ı   | 2   | ı   | - 1 | -   | -   | i    | ı    | 2    |
| CO4          | Interpret the design of windings & core of electrical machines.                               | 2   | 2   | 1   | -   | -   | 1   | 1   | 1   | -   | -    | -    | 1    |

### Subject/Code No: Restructured Power System/5EE5-11 Semester: 5th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                              | P01 | P02 | PO3 | P04 | PO5 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Discover the restructuring process, reasons and objectives of deregulation, market & pricing models, and congestion management.                            | 3   | -   | 3   | 1   | -   | 2   | 2   | 3   | 1   | 1    | 1    | -    |
| CO2          | Categorize electricity market models, congestion management methods, ancillary services, and transmission pricing.                                         |     | 3   | 3   | -   | -   | 2   | 2   | -   | -   | -    | -    | -    |
| CO3          | Compare methods of congestion management, market models & pricing schemes to identify the best options.                                                    | 2   | 2   | 1   | 2   | -   | 2   | 2   | 2   | 1   | 1    | 1    | -    |
| CO4          | Prepare theoretically a restructured model of existing power system by taking into account network congestion, best pricing model, and ancillary services. | 2   | -   | 2   | 2   | -   | 2   | 2   | 1   | -   | -    | 1    | -    |

### Subject/Code No: Power System - I Lab/5EE3-21 Semester: 5<sup>th</sup> Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                           | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Illustrate the basic layouts of hydro, thermal, nuclear and gas power plants.           | 3   | 2   | 2   | ı   | ı   | 1   | 1   | -   | 3   | 3    | ı    | -    |
| CO2          | Distinguish the parameters of the feeders, distributors, and EHV transmission lines.    | 3   | 3   | 2   | 2   | -   | -   | -   | -   | 3   | -    | ı    | -    |
| CO3          | Evaluate the dielectric strength of transformer oil, insulating materials & insulators. | 3   | 3   | 3   | -   | -   | -   | -   | -   | 1   | -    | ı    | 3    |
| CO4          | Create a probability tool to forecast load for short-, medium-, and long-term planning. | 3   | 3   | 3   | 1   | ı   | 1   | 1   | -   | ı   | 1    | 1    | -    |

### Subject/Code No: Microprocessor Lab/5EE3-23 Semester: 5th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                 | P01 | P02 | PO3 | P04 | P05 | 90d | P07 | 80d | 60d | PO10 | P011 | P012 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Demonstrate the functions, operations, and memory structure and hardware units of 8085 microprocessor kit.                    | 2   | 2   | 2   | 3   | 2   | 2   | ı   | ı   | ı   | ı    | 1    | -    |
| CO2          | Evaluate different waveforms using 8253 / 8253 programmable timer.                                                            | 3   | 3   | 3   | ı   | 3   | 1   | ı   | ı   | ı   | ı    | ı    | -    |
| CO3          | Build and demonstrate assembly level programs for transferring data to specified output ports in serial and parallel fashion. | 3   | 3   | 3   | ı   | ı   | 1   | ı   | ı   | ı   | ı    | 1    | -    |
| CO4          | Fabricate 8-bit LED/LCD interface to 8085 microprocessor kit using 8155 and 8255.                                             | 3   | 3   | 3   | ı   | ı   | ı   | ı   | ı   | ı   | ı    | ı    | -    |
| CO5          | Develop programs to perform addition, subtraction, division, block transfer, searching, sorting, etc using assembly language. | 3   | -   | -   | -   | -   | -   | -   | -   | -   | -    | 3    | 3    |

## Subject/Code No: System Programming Lab/5EE3-24 Semester: 5th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                     | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Simulate the basic of MATLAB features and syntaxes in mathematical Programming.                                   | 1   | 1   | -   | 2   | 2   | -   | -   | 1   | -   | -    | -    | 2    |
| CO2          | Solve various basic electrical and electronic problems in MATLAB environment                                      | 1   | 1   | 2   | 2   | 1   | -   | 1   | 1   | 1   | 1    | -    | 2    |
| CO3          | Execute the single-phase induction machine Torque- speed characteristics and transformer test in MATLAB Simulink. | 2   | 2   | 2   | 1   | 1   | -   | -   | -   | 1   | 1    | -    | 2    |
| CO4          | Design Single Phase Full Wave Diode Bridge Rectifier with LC Filter in MATLAB Simulink.                           | 2   | 2   | 2   | -   | -   | 2   | 2   | -   | -   | -    | -    | 2    |
| CO5          | Evaluate the importance of MATLAB in research by simulation work                                                  | 2   | 2   | 2   | -   | -   | -   | 1   | 1   | -   | -    | 2    | -    |

### Subject/Code No: Industrial Training/5EE7-30 Semester: 5th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                             | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|-----------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Recognize industrial methodologies and fields in collaboration with industry experts                      | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO2          | Investigate sophisticated tools and methods employed in industrial processing.                            | 3   | 3   | -   | -   | 1   | -   | 1   | -   | 1   | 1    | 1    | -    |
| CO3          | Enhance understanding of overall workplace etiquette and foster interpersonal and teamwork proficiencies. | 3   | 3   | 3   | 1   | ı   | -   | ı   | -   | ı   | ı    | ı    | -    |
| CO4          | Construct adept presentations and professional work documents                                             | 3   | 3   | 3   | -   | 1   | -   | ı   | -   | ı   | ı    | ı    | -    |
| CO5          | Build the professional presentations and work reports.                                                    | 3   | 3   | 3   | -   | 1   | -   | 1   | -   | ı   | ı    | ı    | -    |

Subject/Code No: Computer Architecture/6EE3-01 Semester: 6th
Course Outcome Mapping with Program Outcome

|              | Oodisc Odtooilic iliappiii                                                                                                                                                                               | ,   |     | <u> </u> |     | ~   |     |     |     |     |      |      |      |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----------|-----|-----|-----|-----|-----|-----|------|------|------|
| CO<br>Number | CO Definition                                                                                                                                                                                            | P01 | P02 | P03      | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
| CO1          | Explain the structure, memory hierarchy, and input-<br>output arrangement of computers, incorporating<br>details about a 16-bit and 32-bit microprocessor.                                               | 2   | 2   | 2        | 2   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO2          | Explore the various addressing modes, programming models, instruction-level pipelining, and the role of memory management units.                                                                         | 2   | 2   | 2        | -   | 1   | 1   | 1   | 1   | 1   | 2    | 1    | -    |
| CO3          | Evaluate the effectiveness of a multi-bus organization, the significance of interrupts and interrupt controllers, the utilization of real mode addressing, and the implementation of dynamic scheduling. | 2   | 2   | 2        | -   | -   | -   | -   | -   | -   | -    | 2    | 2    |
| CO4          | Discuss the interplay between data types, microinstructions, memory classifications, interface circuits, and instruction sets in the context of computer system design.                                  | 2   | 2   | 2        | 1   | -   | -   | -   | 1   | -   | 1    | -    | 2    |

### Subject/Code No: Power System - II/6EE3-02 Semester: 6th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                           | P01 | P02 | P03 | P04 | PO5 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Manipulate the power flow equations to analyze the voltage and frequency issues of system.                                              | 2   | 2   | 2   | 1   | ı   | 1   | ı   | -   | 1   | 1    | -    | -    |
| CO2          | Examine the system stability and contingency by observing the system voltage and frequency.                                             | 2   | 2   | 2   | 2   | -   | -   | -   | -   | 1   | ı    |      | -    |
| CO3          | Interpret the power and demand side management in the prospect of optimum utilization of electrical energy by dynamic pricing strategy. | 2   | 2   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO4          | Summarize different case studies on power system to assess system security.                                                             | 1   | 2   | 2   | 2   | 3   | 2   | 1   | -   | 1   | 1    | -    | -    |

### Subject/Code No: Power System Protection/6EE3-03 Semester: 6th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                       | P01 | P02 | P03 | P04 | P05 | 90d | 70d | P08 | 60d | P010 | P011 | P012 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Understand the fundamentals of fault analysis, power system protection and the components involved in power system protection.      | 2   | 2   | 1   | ı   | 1   | 2   | 1   | -   | ı   | ı    | ı    | 2    |
| CO2          | Describe the concepts of under-frequency, under-voltage and df/dt relays, wide area measurement system and over current protection. | 2   | 2   | 1   | 1   | 1   | 1   | 1   | -   | 1   | 1    | 1    | 2    |
| CO3          | Summarize the protection schemes for power                                                                                          | 2   | 2   | 1   | -   | -   | 1   | 1   | -   | -   | -    | -    | 2    |
| CO4          | Understand the implementation of the digital protection scheme with the help of signal processing techniques.                       | 3   | 3   | 2   | -   | -   | 2   | 2   | -   | -   | -    | 1    | -    |

### Subject/Code No: Electrical Energy Conversion and Auditing/6EE3-04 Semester: 6th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                             | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Illustrate the energy landscape, energy approach, regulations pertaining to energy, ensuring energy stability, and the enhancement of energy utilization. | ı   | ı   | ı   | ı   | ı   | 2   | 2   | 2   | ı   | ı    | ı    | 2    |
| CO2          | Examine methods for conserving energy and technologies that promote efficiency in the creation of electrical and industrial machinery.                    | 2   | 2   | -   | 1   | -   | 2   | 1   | 2   | -   | -    | 1    | 2    |
| CO3          | Assess the pricing structure, conduct energy audits, manage energy consumption, and appraise the energy equilibrium within a company or entity            | 3   | 3   | 1   | 2   | -   | 2   | -   | 1   | -   | -    | -    | -    |
| CO4          | Devise strategies for optimizing energy usage, enhancing power factor, and replacing fuels and energy sources.                                            | 3   | 3   | 1   | 2   |     | 1   | 1   | 2   | 1   |      | 1    | -    |

### Subject/Code No: Electric Drives/6EE3-05 Semester: 6th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                                             | P01 | P02 | P03 | P04 | P05 | 90d | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Elaborate on the intricate principles behind DC and AC drives, delve into the nuances of scalar and vector control methods for alternating current motors, and explore the operation of drives across multiple quadrants. | 2   | 2   | 1   | 2   | 1   | ı   | ı   | -   | ı   | ı    | ı    | -    |
| CO2          | Investigate the interconnection between power electronics and robust control systems knowledge, examining how these domains synergize to achieve meticulous speed regulation for both AC and DC motors.                   | 1   | 2   | 2   | 2   | 1   | 1   | -   | -   | -   | -    | -    | -    |
| CO3          | Formulate the closed-loop control architecture of DC drives and expound upon the design intricacies inherent in achieving vector control for AC drives.                                                                   | 1   | 2   | 2   | 2   | 2   | 2   | 1   | -   | 1   | 1    | -    | -    |
| CO4          | Assess and scrutinize the array of application-<br>oriented precision speed control techniques tailored<br>for both AC and DC motor, considering their<br>effectiveness and suitability in different scenarios.           | 1   | 3   | 3   | 3   | 1   | -   | -   | -   | ,   | 1    | ,    | -    |

### Subject/Code No: Power System Planning. /6EE5-11 Semester: 6th Course Outcome Mapping with Program Outcomes

| CO<br>Number | CO Definition                                                                                                                                             | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | PO8 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Evaluate the various parameters of a power system network (min 3 bus) using different load flow techniques.                                               | 2   | 2   | 3   | 2   | 1   | 1   | -   | ı   | ı   | 1    | 1    | -    |
| CO2          | Investigate the transient stability of power system network (min 3 buses).                                                                                | 3   | 3   | 3   | -   | -   | -   | -   | 1   | 1   | 1    | -    | -    |
| CO3          | Find optimal power flow with the help of analytical and iterative methods.                                                                                | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO4          | Design a power system network (min 3 bus) and analyze the severity of various types of faults.                                                            | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO5          | Comprehend the necessity of limits of voltage and overload in power system and perform the voltage and overload security analysis of power system network | 2   | 2   | 1   | 1   | 3   | 2   | -   | -   | -   | -    | -    | -    |

### Subject/Code No: Power System - II Lab/6EE3-21 Semester: 6th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                               | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Brief about the basic structure of Indian power sector with organizing & monitoring bodies. | 2   | 2   | 2   | 1   | 2   | 1   | -   | -   | ı   | ı    | -    | -    |
| CO2          | Select the Reliability Planning Criteria for Generation, Transmission and Distribution.     | -   | 2   | 3   | 3   | 2   | 1   | -   | -   | 1   | 1    | -    | -    |
| CO3          | Evaluate the factors affecting load dispatch and modeling of Generation Sources.            | 3   | 3   | 2   | 2   | -   | -   | 1   | ı   | ı   | ı    | 1    | -    |
| CO4          | Estimate the Objectives of Transmission Planning with Network Reconfiguration.              | 1   | 3   | 3   | 3   | 2   | -   | 1   | 1   | ı   | ı    | 1    | -    |
| CO5          | Brief about the basic structure of Indian power sector with organizing & monitoring bodies. | 2   | 2   | 2   | 1   | 2   | 1   | -   | -   | -   | -    | -    | -    |

### Subject/Code No: Electric Drives Lab/6EE3-22 Semester: 6th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                               | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Differentiate the testing of firing circuits in three phase-controlled bridge converters.                                   | 2   | 2   | 2   | -   | -   | 2   | 2   | 2   | 1   | 1    | -    | -    |
| CO2          | Examine the operation of three phase fully and half controlled converters for different types of loads experimentally.      | 3   | 3   | 3   | 1   | 1   | 2   | 1   | 1   | ı   | 1    | 1    | -    |
| CO3          | Demonstrate the speed control methods of AC & DC motors                                                                     | 3   | -   | 3   | ı   | 1   | 3   | 1   | 3   | ı   | ı    | ı    | -    |
| CO4          | Illustrate operation and analysis of different converters with reference to control strategy.                               | 3   | 3   | 3   | 1   | -   | 3   | -   | -   | -   | 1    | -    | -    |
| CO5          | Analyze power quality aspects of three-phase controlled converters by calculating different parameters for different loads. | 3   | 3   | 3   | -   | -   | 3   | -   | -   | -   | -    | -    | -    |

### Subject/Code No: Power System Protection Lab/6EE3-23 Semester: 6th Course Outcome Mapping with Program Outcome

|              | Course Gateome mapping                                                                                                                           | ,   |     | <u> </u> |     | • • • • • • • • • • • • • • • • • • • • |     |     |     |     |      |      |      |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----------|-----|-----------------------------------------|-----|-----|-----|-----|------|------|------|
| CO<br>Number | CO Definition                                                                                                                                    | P04 | P02 | P03      | P04 | P05                                     | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
| CO1          | Determine fault type, fault impedance and fault location during single line to ground fault, line-to line fault and double line to ground fault. | 3   | 3   | 3        | -   | -                                       | 1   | 1   | 1   | 1   | 1    | 1    | -    |
| CO2          | Explain the operation of micro-controller based over current relay in DMT type and IDMT type.                                                    | 2   | 3   | 3        | 3   | -                                       | -   | -   | 1   | -   | 1    | ı    | -    |
| CO3          | Analyze and discuss the operation of micro-<br>controller based under voltage relay, and micro-<br>controller based over voltage relay.          | 3   | 3   | -        | -   | -                                       | 1   | 1   | 1   | 1   | 1    | 1    | -    |
| CO4          | Explain the operation of micro-controller based unbiased single-phase differential relay.                                                        | 3   | 3   | 3        | -   | -                                       | ı   | 1   | 1   | 1   | 1    | 1    | -    |
| CO5          | Determine fault type, fault impedance and fault location during single line to ground fault, line-to line fault and double line to ground fault. | 3   | 3   | 3        | -   | -                                       | -   | -   |     | -   | -    | -    | -    |

### Subject/Code No: Modeling and simulation lab/6EE3-24 Semester: 6th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                            | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Acquire proficiency in the software tools essential for<br>the simulation of machinery and power systems.<br>Apply this knowledge practically.           | 3   | 3   | 3   | 1   | 1   | -   | 1   | -   | 1   | 1    | -    | -    |
| CO2          | Examine and contrast the operational effectiveness of electrical machinery when working alongside reactive power compensation equipment.                 | 2   | 3   | 3   | 3   | ı   | ı   | ı   | ı   | ı   | ı    | ı    | 1    |
| CO3          | Assess the functionality of Flexible AC Transmission System (FACTS) controllers based on their suitability for power system applications.                | 3   | 3   | ı   | ı   | ı   | -   | ı   | -   | ı   | ı    | ı    | -    |
| CO4          | Devise a proficient Single Machine Infinite Bus (SMIB) model that incorporates a FACTS controller, employing MATLAB software as the platform for design. | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO5          | Acquire proficiency in the software tools essential for<br>the simulation of machinery and power systems.<br>Apply this knowledge practically.           | 3   | 3   | 3   | 1   | 1   | -   | 1   | -   |     | ı    | -    | -    |

#### Subject/Code No: Power Quality and Facts/7EE5-12 LTP: 3+0+0 Semester: 7th

#### **Course Outcome Mapping with Program Outcome**

| CO<br>Number | CO Definition                                                                                                                                   | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Illustrate both compensated and uncompensated transmission line configurations, and then contrast the effects of series and shunt compensation. | 2   | 2   | 2   | 1   | 2   | 1   | -   | -   | 1   | 1    | 1    |      |
| CO2          | Examine FACTS (Flexible AC Transmission Systems) devices, detailing their operational principles and applications within electrical systems.    | 1   | 2   | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1    | 1    |      |
| CO3          | Analyze the distinctions among power quality issues in distribution systems.                                                                    | 1   | 2   | 2   | 2   | 2   | 2   | -   | -   | -   | -    | -    |      |
| CO4          | Illustrate DSTATCOM & Dynamic Voltage Restorer                                                                                                  | 2   | 2   | 2   | 2   | 2   | 2   | -   | -   | -   | -    | -    |      |

#### Subject/Code No: Wind and Solar Energy Systems. /7EE5-11 LTP: 3+0+0 Semester: 7th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                   | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Use the concept of wind and solar pv energy generation in energy applications.                  | 1   | 2   | 2   | 2   | 2   | 2   | ı   | 1   | ı   | ı    | ı    | -    |
| CO2          | Categorize the different topologies of wind and solar power generation                          | 1   | 2   | 2   | 2   | 1   | 1   | -   | -   | 1   | 1    | 1    | -    |
| CO3          | Evaluate the hybrid and standalone solar and Wind energy systems.                               | 1   | 2   | 2   | 2   | 2   | 2   | -   | -   | -   | -    | -    | -    |
| CO4          | Investigate the different issues in integration of wind and solar energy systems into the grid. | 1   | 2   | 2   | 2   | 1   | 1   | 1   | 1   | 1   | ı    | ı    | 1    |

#### Subject/Code No: Embedded Systems Lab/7EE3-21 LTP: 0+0+3 Semester: 7th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                              | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Elaborate the fundamentals of embedded system and sensor integration.                                      | 2   | 3   | 3   | -   | -   | -   | -   | ı   | 1   | ı    | -    | -    |
| CO2          | Simulate the programming knowledge for controlling a real time process using hardware in loop system.      | 1   | 3   | 2   | 2   | 2   | 2   | 1   | -   |     | -    | -    | -    |
| CO3          | Explore the specific sensor needs within a given control process.                                          | 2   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 3    |
| CO4          | Critique the time needed for processing real-time data into the digital domain and the reverse conversion. | 1   | 3   | 1   | 2   | 2   | -   | -   | -   | -   | -    | -    | -    |
| CO5          | Assess intricate real-world processes within embedded systems.                                             | 2   | 3   | 3   | -   | -   | 3   | -   | -   | -   | -    | -    | -    |

#### Subject/Code No: Advance control system lab/7EE3-22 LTP: 0+0+3 Semester: 7th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                             | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Utilize MATLAB to showcase the temporal behavior of both rotary and linear servo systems.                                 | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | 1    | ı    | 3    |
| CO2          | Investigate the operational principles of speed and positioning control transfer functions for DC and AC servo motors.    | 3   | 2   | 2   | 2   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO3          | Utilize MATLAB to conduct a frequency response analysis on a linearized model of an industrial robot for minor movements. | 2   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO4          | Evaluate the effectiveness of P, PI, and PID controllers across diverse control system scenarios using MATLAB.            | 2   | 3   | 3   | 1   | ı   | ı   | 2   | -   | ı   | ı    | ı    | -    |
| CO5          | Devise Arduino-based control setups for real-world implementations involving pendulum and inverted pendulum systems.      | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 3    |

#### Subject/Code No: Industrial Training/7EE7-30 LTP: 0+0+3 Semester: 7th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                  | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Demonstrate competency in the field of electrical engineering through problem identification, formulation and solution.                        | -   | -   | 3   | 3   | 3   | -   | -   | -   | -   | -    | -    | -    |
| CO2          | Develop the ability to work as an individual and in group with the capacity to be a leader or manager as well as an effective team member.     | -   | -   | 2   | 2   | 2   | 2   | -   | -   | -   | -    | -    | -    |
| CO3          | Implement skills effectively in oral and written communication, including report writing and power point presentations using multimedia tools. | 2   | 2   | 2   | 2   | -   | -   | 1   | -   | -   | 1    | -    | 2    |
| CO4          | Analyze industrial problems as a part of industrial training curriculum.                                                                       | -   | 3   | 3   | 3   | 2   | -   | ı   | -   | -   | 1    | ı    | -    |
| CO5          | Acquire practical understanding of theoretical aspects by participating in industrial projects.                                                | 1   | 3   | 3   | 3   | -   | -   | 1   | -   | -   | 1    |      | 2    |

#### Subject/Code No: Seminar/7EE7-40 LTP: 0+0+3 Semester: 7th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                           | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Identify important practical concepts from the industry exposure and grasp the depth knowledge of the topic.                            | 1   | 2   | 2   | 2   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO2          | Understand organizational issues including teams, attitudes and define work-life balance and its impact on organizations and employees. | 2   | 2   | 3   | ı   | -   | ı   | ı   | 1   | ı   | 1    | -    | -    |
| CO3          | Get in touch with recent technologies.                                                                                                  | 1   | 2   | 2   | 2   | -   | -   | -   | -   | 1   | -    | -    | 2    |
| CO4          | Solve industrial problems as a part of industrial training curriculum.                                                                  | 1   | 2   | 2   | -   | -   | -   | 2   | -   | -   | -    | -    | 3    |

#### Subject/Code No: Power Generation Sources/7EE6-60.2 LTP: 3+0+0 Semester: 7th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                           | P01 | P02 | P03 | P04 | P05 | P06 | P07 | PO8 | 60d | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Describe the various renewable energy sources.                                          | 2   | 2   | 2   | 1   | 2   | 1   | -   | -   | -   | -    | -    | -    |
| CO2          | Inspect possible renewable energy sources.                                              | 1   | 2   | 2   | 2   | 1   | 1   | -   | -   | -   | -    | -    | -    |
| CO3          | Illustrate the renewable energy sources.                                                | 1   | 2   | 2   | 2   | 2   | 2   | 1   | ı   | 1   | -    | -    | -    |
| CO4          | Identify the energy sources & propose renewable energy sources as societal application. | 2   | 2   | 2   | 2   | 2   | 2   | ı   |     | -   | -    | -    | -    |

#### Subject/Code No: Electrical Machine and Drives/7EE6.601 LTP: 3+0+0 Semester: 7th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                       | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-----------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Use the concepts of constructional details and principle of rotating machines in electrical drives. | -   | -   | 3   | 3   | 3   | ı   | ı   | ı   |     | 1    |      | -    |
| CO2          | Identify motor rating and specification for efficient conversion.                                   | -   | -   | 2   | 2   | 2   | 2   | -   | -   | -   | -    | -    | -    |
| CO3          | Investigate the various control techniques for speed control on various electric drives.            | 2   | 2   | 2   | 2   | ı   | ı   | ı   | ı   | -   | -    | -    | 2    |
| CO4          | Justify the design knowledge for various closed loop control of electric drives.                    | -   | 3   | 3   | 3   | 2   | 1   | 1   | 1   |     |      |      | -    |

Subject/Code No: Advanced Electric Drives/8EE3-13 LTP: 3+0+0 Semester: 8th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                       | P01 | P02 | PO3 | P04 | PO5 | 90d | P07 | PO8 | 60d | PO10 | P011 | P012 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Organize the advanced controls of AC drives including digital signal processing-based motion control.                               | 2   | 2   | 2   | 1   | 1   | 1   | -   | -   | -   | -    | -    | 2    |
| CO2          | Differentiate transformations and reference frame theories on AC motors for implementing the vector control scheme.                 | 2   | 2   | 2   | 2   | 1   | 1   | 1   | -   | 1   | 1    | -    | 2    |
| CO3          | Argue the need for field flux control and DSP based control in real world application of AC motor drives.                           | 2   | 2   | 2   | 2   | 2   | 2   | ı   | -   | ı   | ı    | -    | 1    |
| CO4          | Investigate the vector or field-oriented control of ac drives to accommodate parameters variations for uncompromised speed control. | 2   | 2   | 2   | 2   | 2   | 2   | -   | -   | -   | -    | -    | 1    |

#### Subject/Code No: HVDC Transmission System/8EE3-11 LTP: 3+0+0 Semester: 8th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                              | P01 | P02 | P03 | P04 | P05 | 90d | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|----------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Demonstrate DC transmission topology along with components of HVDC system. | 2   | 2   | 2   | 1   | 1   | 1   | 1   | -   | -   | ı    | 1    | -    |
| CO2          | Compare VSCs for control of HVDC systems.                                  | 2   | 2   | 2   | 2   | 2   | -   | -   | -   | -   | 1    | -    | 2    |
| CO3          | Check stability issues in HVDC link.                                       | 2   | 2   | 2   | 2   | 2   | 2   | -   | -   | -   | -    | -    | _    |
| CO4          | Recommend proper MTDC link.                                                | 2   | 2   | 2   | 1   | 1   | 1   | -   | -   | -   | -    | -    | _    |

#### Subject/Code No: Energy Audit and Demand side Management/8EE6-60.1 LTP: 3+0+0 Semester: 8th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                                                                                                 | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Show the energy scenario, energy strategy, energy laws, energy security and energy conservation in India.                                                                                                                                                                     | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | 3    |
| CO2          | Organize the Energy forecasting, Energy economics, Energy pricing and incentives, energy and its management, energy planning, and energy economics. Energy auditing of motors, lighting system and building, by appropriate analysis methods through survey instrumentations. | 3   | 2   | 2   | 2   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO3          | Examine the Electrical-Load Management and Demand side Management in transport, agriculture, household and commercial sectors.                                                                                                                                                | 2   | 3   | -   | -   | 1   | 1   | 1   | 1   | 1   | 1    | 1    | 2    |
| CO4          | Investigate the pre or detail energy audit in lighting system, household and commercial buildings, agriculture, and electric machinery of an industry or organization.                                                                                                        | 2   | 3   | 3   | -   | -   | -   | 2   | -   | -   | -    | -    | -    |

#### Subject/Code No: Soft Computing/8EE6-60.2 LTP: 3+0+0 Semester: 8th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                     | P01 | P02 | PO3 | P04 | P05 | P06 | 40d | 80d | 60d | PO10 | P011 | P012 |
|--------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Implement the various soft computing approaches for finding the optimal solutions.                | 3   | 3   | 3   | ı   | ı   | ı   | ı   | ı   | ı   | ı    | ,    | 3    |
| CO2          | Compare the feasibility of applying a soft computing methodology for a particular problem         | 3   | 2   | 2   | 2   | ı   | ı   | ı   | ı   | ı   | ı    | 1    | -    |
| CO3          | Justify soft computing technologies such as FL, NN, GA to optimize the design of complex systems. | 2   | 3   | ı   | ı   | -   | -   | -   | -   | -   | 1    | -    | 2    |

#### Subject/Code No: Energy Systems Lab/8EE3-21 LTP: 0+0+3 Semester: 8th Course Outcome Mapping with Program Outcome

| CO<br>Number | CO Definition                                                                                                                                                                                   | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1          | Categorize Performance of Solar Flat Plate Thermal Collector Operation with Variation in Mass Flow Rate and Level of Radiation.                                                                 | 3   | 3   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | 3    |
| CO2          | Compare wind turbine generators with DC generators, DFIG, PMSG etc.                                                                                                                             | 3   | 3   | 3   | -   |     | -   | -   | -   | -   | -    |      | -    |
| CO3          | Write different components of Micro Grid, microhydel pumped storage system and Fuel Cell and its operation.                                                                                     | 3   | 3   | 3   | ı   | 2   | 2   | ı   | ı   | ı   | ı    | 1    | -    |
| CO4          | Design and simulate hybrid wind-solar power generation along with Performance Assessment of Hybrid Power System by using Intelligent Controllers for on-grid and off-grid Hybrid Power Systems. | 3   | 3   | 3   | 1   | ı   | 1   | 1   | 1   | 1   | 1    | ı    | -    |
| CO5          | Design and simulate hybrid wind-solar power generation along with Performance Assessment of Hybrid Power System by using Intelligent Controllers for on-grid and off-grid Hybrid Power Systems. | 3   | 3   | 2   | 2   | -   | 2   | -   | -   | -   | -    | -    | -    |

#### Subject/Code No: Project/8EE7-50 LTP: 0+0+3 Semester: 8th Course Outcome Mapping with Program outcome

| CO Number | CO Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P01 | P02 | P03 | P04 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|
| CO1       | Demonstrate literature survey and technical pre-requisites of the selected project topic. Select the category of project (1.Design & implementation 2.Analysis 3.Up gradation of old project) Work on the allocated project under the supervision of the assigned guide Survey the available literature (select base paper) on the allocated project topic (from various resources-books, research papers, dissertation reports) Gain expertise over the technical and non-technical aspects of the finalized project | 3   | 3   | 3   | 1   |
| CO2       | Predict the challenges in practical implementation of the project hardware/software and draft their possible alternate solutions.                                                                                                                                                                                                                                                                                                                                                                                     | 3   | 2   | 2   | 2   |
| CO3       | Identify and summarize the challenges in practical implementation of the project. Make a rough draft of the possible alternate solutions, for the recognized challenges. Choose the feasible, practically realizable and economically viable options. Finalize at least one option (from the chosen) and proceed further as per the guidelines.                                                                                                                                                                       |     |     |     |     |
| CO4       | Evaluate the contemporary tools suitable for measuring and utilizing databases to address the identified issue(s).                                                                                                                                                                                                                                                                                                                                                                                                    | 2   | 3   | -   | -   |
| CO5       | Infer the result findings, compare with the benchmark models and justify the concluding remarks along with the future scope.                                                                                                                                                                                                                                                                                                                                                                                          | 2   | 3   | 3   | -   |
| CO6       | Prepare technical report with ethical practices and communicate his/her findings in a project with presentation skills and confidence level.                                                                                                                                                                                                                                                                                                                                                                          | 3   | 3   | 3   | -   |
| C07       | Demonstrate knowledge and understanding of the Identified problem along with team to financially manage projects and in multidisciplinary environments.                                                                                                                                                                                                                                                                                                                                                               | 3   | 2   | 2   | 2   |

### **CHAPTER IX**

Program wise CO-PSO Mapping Session: 2021-22

Department of Computer Engineering Program Name: Computer Engineering

Subject/Code No: Advanced Engineering Mathematics/3CS2-01 LTP: 3L+0T+0P Semester: 3rd Course Outcome Mapping with Program Specific Outcome

| CO Number | CO Definition                                                                                                                     | PS01 | PS02 | PS03 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|------|------|------|
| CO1       | Recall and understand the fundamental concepts of probability and standard distributions which can describe real life phenomenon. |      | 3    | 2    |
| CO2       | Analyze the various method of numerical solutions of Normal, Poisson and Binomial probability distribution.                       |      | 3    | 2    |
| CO3       | Formulate the optimization problems in mathematical form with classification.                                                     |      | 3    | 2    |
| CO4       | Interpret non-linear optimization problems and solve by appropriate methods.                                                      |      | 3    | 2    |
| CO5       | Demonstrate linear optimization problems and solve by standard methods.                                                           |      | 3    | 2    |

Subject/Code No: Technical Communication/3CS1-02 LTP: 2L+0T+0P Semester: 3rd Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                             | PS01 | PS02 | PSO3 |
|-----------|-----------------------------------------------------------------------------------------------------------|------|------|------|
| CO1       | Understand the process of technical communication in terms of LSRW.                                       |      | 1    | 2    |
| CO2       | Apply the concept of Technical Materials/Texts in various technical documents.                            |      | 1    | 2    |
| CO3       | Enhance the skills in the process of technical communication in terms of LSRW.                            |      | 1    | 2    |
| CO4       | Implement the basic concepts of technical communication in Technical Reports, articles and their formats. |      | 1    | 2    |

#### Subject/Code No: Digital Electronics/3CS3-04 LTP: 3L+0T+0P Semester: 3rd Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                                   | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Demonstrate basic principles of digital circuits and different number systems                                                                                                                                   | 3        | 3        | 2        |
| CO2       | Distinguish logic expressions and circuits using Boolean laws and K-map                                                                                                                                         | 3        | 3        | 1        |
| СОЗ       | Differentiate types of digital electronic circuits and also the different logic families involved in the digital system to prepare the most simplified circuits using various mapping and mathematical methods. | 3        | 3        | 2        |
| CO4       | Design various types of memoryless element digital electronic circuits for particular operation within the realm of economic, performance, efficiency, user friendly and environmental constraints.             | 2        | 3        | 2        |
| CO5       | Design various types of memory element digital electronic circuits for particular operation within the realm of economic, performance, efficiency, user friendly and environmental constraints.                 | 3        | 3        | -        |

#### Subject/Code No: Data Structures and Algorithms/3CS4-05 LTP: 3L+0T+0P Semester: 3rd Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                        | PS01 | PS02 | PSO3 |
|-----------|------------------------------------------------------------------------------------------------------|------|------|------|
| CO1       | Recognize fundamental Stack operations to address a range of engineering problems.                   | 3    | 2    | 3    |
| CO2       | Relate the principles of Queues and Linked Lists to offer solutions for computer-based issues.       | 3    | 3    | 2    |
| CO3       | Discover different Search and Sorting methods to rationalize their application in diverse scenarios. | 3    | 3    | 3    |
| CO4       | Practice the concept of Trees and their operations to furnish valid solutions.                       | 2    | 3    | 2    |
| CO5       | Compare a variety of techniques that can be employed with Graphs and Hashing.                        | 3    | 1    | 3    |

#### Subject/Code No: Object Oriented Programming/3CS4-06 LTP: 3L+0T+0P Semester: 3rd Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                      | PS01 | PS02 | PSO3 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|------|------|------|
| CO1       | Describe the Object-Oriented Programming paradigm with the concept of objects and classes.                                         | 3    | 2    | 2    |
| CO2       | Explain the memory management techniques using constructors, destructors and pointers                                              | 3    | 2    | 2    |
| CO3       | Classify and demonstrate the various Inheritance techniques.                                                                       | 3    | 2    | 2    |
| CO4       | Understand how to apply polymorphism techniques on the object-oriented problem.                                                    | 3    | 2    | 2    |
| CO5       | Summarize the exception handling mechanism, file handling techniques and Use of generic programming in Object oriented programming | 3    | 2    | 2    |

#### Subject/Code No: Software Engineering/3CS4-07 LTP: 3L+0T+0P Semester: 3rd Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                        | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Recognize different software life cycle models and testing techniques to develop real time projects. | 1        | 2        | 2        |
| CO2       | Identify cost estimation and risk analysis in project management.                                    | 2        | 3        | 2        |
| CO3       | Interpret and deduce the engineering process of software requirement analysis.                       | 2        | 1        | 3        |
| CO4       | Apply procedural design methods to architect software systems.                                       | 2        | 1        | 3        |
| CO5       | Collaborate the concept of object-oriented analysis and design in software development process.      | 3        | 2        | 2        |

#### Subject/Code No: Data Structures and Algorithms Lab/3CS4-21 LTP: 0L+0T+3P Semester: 3rd Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                               | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Recognize fundamental Stack and Queue operations to address a range of engineering problems.                | 3        | 3        | 2        |
| CO2       | Relate the principles of Linked Lists to offer solutions for computer-based issues.                         | 3        | 3        | 3        |
| CO3       | Discover different Search and Sorting methods to rationalize their application in diverse scenarios.        | 3        | 3        | 2        |
| CO4       | Devise diverse operations on non-linear data structures such as trees and graphs.                           | 2        | 3        | 3        |
| CO5       | Propose a solution for a provided engineering problem utilizing Stack, Queue, Linked List, Tree and Sorting | 3        | 3        | 2        |

#### Subject/Code No: Object Oriented Programming Lab/3CS4-22 LTP: 0L+0T+3P Semester: 3rd Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                            | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|--------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Create and explain Basic C++ Program using i/o variables and structures. | 3        | 2        | 3        |
| CO2       | Apply object-oriented programming concepts using class and objects       | 3        | 2        | 3        |
| CO3       | Design and assess the classes for code reuse                             | 3        | 2        | 3        |
| CO4       | Analysis and apply the generic classes concepts in programming problem   | 3        | 2        | 3        |
| CO5       | Illustrate and evaluate the file Input Output mechanisms                 | 3        | 2        | 3        |

#### Subject/Code No: Software Engineering Lab/3CS4-23 LTP: 0L+0T+3P Semester: 3rd Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                                          | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Observe the requirements specification, function-oriented design using Software Analysis and Software Design of given project and relate the use of appropriate CASE tools and other tools in the software life cycle. | 3        | 2        | 2        |
| CO2       | Translate Software Requirements Specification (SRS) for a given problem in IEEE template.                                                                                                                              | 2        | 1        | 3        |
| CO3       | Select DFD model (level-0, level-1 DFD and Data dictionary) of the project.                                                                                                                                            | 2        | 1        | 3        |
| CO4       | Prepare all Structure and Behavior UML diagram of the given project.                                                                                                                                                   | 2        | 2        | 2        |
| CO5       | Test/Evaluate "Project Libre" a project management software tool to manage files.                                                                                                                                      | 1        | 1        | 3        |

#### Subject/Code No: Digital Electronics Lab/3CS4-24 LTP: 0L+0T+3P Semester: 3rd Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                   | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Demonstrate the basics of logic gates                                                                           | 1        | 3        | 2        |
| CO2       | Demonstrate basic combinational circuits and verify their functionalities                                       | 1        | 3        | 2        |
| CO3       | Apply the working mechanism and design guidelines of different sequential circuits in the digital system design | 2        | 3        | 2        |
| CO4       | Construct different types of counters for real time digital systems                                             | 2        | 3        | 2        |
| CO5       | Distinguish the different types of shift registers                                                              | 2        | 3        | 2        |

#### Subject/Code No: Discrete Mathematics Structure/4CS2-01 LTP: 3L+0T+0P Semester: 4th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                       | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Describe basic concept of Sets, Relations, Functions and Discrete Structure and apply appropriate methods to solve the problems.                    | 1        | 3        | 2        |
| CO2       | Describe the concept of mathematical logic to create the problem in appropriate form and test for validity of the problem.                          | 1        | 3        | 2        |
| CO3       | Apply fundamental mathematical concepts such as sets, relations, Combinatorics technique to formulate the problems and solve by appropriate method. | 1        | 3        | 2        |
| CO4       | Interpret the concept of groups, ring and field to analyze the complex problems.                                                                    | 1        | 3        | 2        |
| CO5       | Demonstrate the model of real-world problems using concept of Graph and solve the problems by standard result and graph algorithms.                 | 1        | 3        | 2        |

#### Subject/Code No: Managerial Economics and Financial Accounting/4CS1-03 LTP: 2L+0T+0P Semester: 4th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                               | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Recognize and describe the fundamental concepts of Economics and Financial Management and define the meaning of national income, demand, supply, cost, market structure, and balance sheet. | 3        | 1        |          |
| CO2       | Calculate and classify the domestic product, national product and elasticity of price on demand and supply.                                                                                 | 3        | 1        |          |
| CO3       | Draw the cost graphs, revenue graphs and forecast the impact of change in price in various perfect as well as imperfect market structures.                                                  | 3        | 2        |          |
| CO4       | Compare the financial statements to interpret the financial position of the firm and evaluate the project investment decisions.                                                             | 2        | 2        |          |

#### Subject/Code No: Microprocessor & Interfaces/4CS3-04 LTP: 3L+0T+0P Semester: 4th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                        | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Classify the basic operations of Microprocessor and microcontroller using their pin and architectural diagram, and also about area of manufacturing and performance. | 2        | 3        | 3        |
| CO2       | Practice of Knowledge about programing proficiency, using various addressing modes and data transfer instructions of microprocessor and microcontroller.             | 3        | 2        | 3        |
| CO3       | Evaluate the measures of Assembly Language Programming.                                                                                                              | 2        | 3        | 3        |
| CO4       | Discriminate the interfacing of various circuits with microprocessor.                                                                                                | 2        | 3        | 3        |
| CO5       | Compare the different programming logic applications with 8085 microprocessor.                                                                                       | 3        | 2        | 3        |

#### Subject/Code No: Database Management System/4CS4-05: LTP: 3L+0T+0P Semester: 4th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Tabulate Database System with the help of Entity Relationship Diagram that visualizes a database system implemented in a real-world scenario. | 3        |          | 1        |
| CO2       | Apply data deduction and manipulation techniques using query languages on a variety of databases.                                             | 3        | 2        | 1        |
| CO3       | Use normal forms in the process of enhancing the database schema through refinement techniques.                                               | 3        | 1        |          |
| CO4       | Create transaction plans incorporating diverse scheduling types.                                                                              | 3        |          |          |
| CO5       | Generalize and assess the effectiveness of concurrency control mechanisms and recovery systems.                                               | 2        | 1        | 1        |

#### Subject/Code No: Theory of Computation/4CS4-06: LTP: 3L+0T+0P Semester: 4th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                       | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Apply the knowledge of different types of grammar; he/she can analyze the all types of grammar and evaluate the relationship among them.                                            | 2        | 3        | 2        |
| CO2       | Differentiate the concept of regular expression and finite automaton and apply the knowledge to compare the procedure for writing regular expression for an automaton or vice versa | 2        | 2        | 2        |
| CO3       | Apply the knowledge of Context Free grammar; he/she can generate the Context free grammar and Pushdown Automaton for evaluating the CFG                                             | 1        | 1        | 2        |
| CO4       | Apply the knowledge of Turing Machine he/she can analyze the Type-0 grammar and can design and evaluate the Turing Machine                                                          | 1        | 2        | 2        |
| CO5       | Apply the knowledge of Pumping Lemma Theorem students can check whether the given grammar Regular grammar/Context Free Grammar or not                                               | 2        | 1        | 3        |

#### Subject/Code No: Data Communication and Computer Networks/4CS4-07 LTP: 3L+0T+0P Semester: 4th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                            | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Able to identify the principles of layered protocol architecture; be able to recognize and generalize the system functions in the correct protocol layer and further illustrate how the layers interact. | 2        | 2        | 3        |
| CO2       | State and cite mathematical problems for data-link and network protocols.                                                                                                                                | 1        | 1        | 2        |
| CO3       | Use network layer protocols and calculate number of subnets required for a network.                                                                                                                      | 1        | 3        | 1        |
| CO4       | Compute the reliability of data transfer over transport layer by glossy channel bit errors problem.                                                                                                      | 2        | 2        | 1        |
| CO5       | Select and plan for common services, system services, such as name and address lookups, and communications applications.                                                                                 | 1        | 1        | 3        |

#### Subject/Code No: Microprocessor & Interfaces Lab/4CS4-21 LTP: 0L+0T+2P Semester: 4th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                  | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Analyze the fundamentals of assembly level programming                                                                         | 2        | 2        | 3        |
| CO2       | Apply interfacing concept between input and output devices.                                                                    | 2        | 2        | 3        |
| CO3       | Elaborate the interfacing of various other devices with microprocessor.                                                        | 1        | 1        | 3        |
| CO4       | Compose the various programs on different problems using Assembly Language Programming.                                        | 2        | 2        | 3        |
| CO5       | Implement standard microprocessor real time interfaces including digital-to-analog converters and analog-to-digital converters | 1        | 1        | 3        |

#### Subject/Code No: Database Management System Lab/4CS4-22 LTP: 0L+0T+3P Semester: 4th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                           | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Create and execute a database schema for a specified problem domain                                                     | 3        |          | 1        |
| CO2       | Manage integrity constraints within a database using a relational database management system (RDBMS),                   | 3        |          | 1        |
| CO3       | Construct and devise a graphical user interface (GUI) application using a fourth-generation programming language (3GL). | 3        |          |          |
| CO4       | Composing PL/SQL code encompassing stored procedures, stored functions, cursors, and packages.                          | 3        |          | 1        |
| CO5       | Produce SQL and Procedural interfaces to SQL comprehensively.                                                           | 3        |          | 1        |

#### Subject/Code No: Network Programming Lab/4CS4-23 LTP: 0L+0T+3P Semester: 4th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                   | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Identify the functioning of various networking equipment's                                      | 1        | 3        | 2        |
| CO2       | Illustrate the LAN Installation techniques and Configurations techniques                        | 2        | 1        | 1        |
| CO3       | Solving various Error correcting techniques and framing methods                                 | 2        | 3        | 1        |
| CO4       | Practice the programs for client and server involving UDP/TCP sockets using socket programming. | 1        | 1        | 3        |
| CO5       | Estimate the communication between client and server using Network Simulator.                   | 2        | 1        | 3        |

#### Subject/Code No: Linux Shell Programming Lab/4CS4-24 LTP: 0L+0T+2P Semester: 4th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                             | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Summarize the concepts and commands in UNIX.                                                              | 2        | 2        | 2        |
| CO2       | Construct the directory layout of a typical UNIX system, maintain, and secure UNIX directories and files. | 3        | 2        | 2        |
| CO3       | Illustrate the knowledge to use the several shell quoting mechanisms correctly.                           | 3        | 2        | 2        |
| CO4       | Construct regular expression using filters and various commands to express the patterns.                  | 3        | 2        | 2        |
| CO5       | Write simple scripts to develop basic command output                                                      | 2        | 2        | 2        |

#### Subject/Code No: Java Lab/4CS4-25 LTP: 0L+0T+2P Semester: 4th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                              | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Express and restate fundamentals of java, and tools for program designing environments.                                                                    | 2        | 2        | 1        |
| CO2       | Construct classes and implement the principles of method overloading, inheritance, and access controls within those classes.                               | 2        | 2        | 1        |
| СОЗ       | Develop Java packages and incorporate the concept of interfaces, along with importing these packages in Java.                                              | 2        | 2        | 1        |
| CO4       | Formulate the application by managing file operations, handling exceptions, and implementing threads.                                                      | 2        | 2        | 1        |
| CO5       | Create applications utilizing Java applets and design various polygons. This task involves the application of knowledge and the synthesis of design skills | 2        | 2        | 1        |

#### Subject/Code No: Information Theory & Coding/5CS3-01 LTP: 2L+0T+0P Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                           | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Solve the theory algebra and linear algebra in source coding            | 1        | 1        | 1        |
| CO2       | Create channel performance using information theory                     | 2        | 3        | 2        |
| CO3       | Manipulate linear block codes for error detection and error correction. | 2        | 2        | 2        |
| CO4       | Modify Cyclic codes for error detection and error correction.           | 2        | 1        | 1        |
| CO5       | Discover convolution codes for performance analysis.                    | 2        | 1        | 2        |

#### Subject/Code No: Compiler Design/5CS4-02 LTP: 3L+0T+0P Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                     | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Illustrate the different phases of compiler to understand it's working.           | 2        | 2        | 2        |
| CO2       | Use and execute different types of parsing algorithm                              | 3        | 2        | 3        |
| CO3       | Distinguish different types of Intermediate code generations.                     | 3        | 2        | 3        |
| CO4       | Summarize different types of storage organization techniques.                     | 3        | 3        | 2        |
| CO5       | Dissect the issues in code generator's design and basic block control flow graph. | 2        | 3        | 3        |

#### Subject/Code No: Operating Systems/5CS4-03 LTP: 3L+0T+0P Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                             | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Analyze the concept of Operating Systems, including their essential significance and fundamental operational processes.                                                   | 3        | 1        | 2        |
| CO2       | Utilize process scheduling techniques and inter-process communication strategies to evaluate their effectiveness in resolving real-world classical problems.              | 3        | 1        | 2        |
| CO3       | Analyzing Memory Management Techniques and Page Replacement Algorithms leads to the formulation of Free Space Management with the concept of virtual memory.              | 2        | 1        | 2        |
| CO4       | Evaluate Memory Management Techniques and Page Replacement Algorithms to formulate Free Space Management, integrating virtual memory, and showcasing critical assessment. | 3        | 2        | 2        |
| CO5       | Illustrate understanding of File Systems, Input / Output Systems, and diverse disk scheduling algorithms through case studies.                                            | 2        | 2        | 2        |

#### Subject/Code No: Computer Graphics & Multimedia/5CS4-03 LTP: 3L+0T+0P Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                           | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Understand and apply basics about computer graphics along with graphics standards.                                                      | 3        | 2        |          |
| CO2       | Explain and analyses various algorithms to scan, convert the basic geometrical primitives, Area filling.                                | 3        |          | 2        |
| CO3       | Explain, illustrate and design various algorithms for 2D transformations and clipping.                                                  | 3        |          | 2        |
| CO4       | Understand various color models in computer graphics system and develop animated motions through OpenGL.                                | 3        |          | 2        |
| CO5       | To understand the fundamentals concepts of parallel and perspective projections and evaluate various algorithms for 3D transformations. | 3        |          | 2        |

#### Subject/Code No: Analysis of Algorithm/5CS4-05 LTP: 3L+0T+0P Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                       | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Observe the accuracy and efficiency of the algorithm.                                               | 3        | 3        | 3        |
| CO2       | Associate Dynamic Programming to address real-time challenges.                                      | 3        | 2        | 3        |
| CO3       | Construct and practice different pattern matching algorithms and the assignment problem.            | 3        | 3        | 2        |
| CO4       | Estimate the effectiveness of randomized algorithms through Min-Cut, 2-SAT, and similar techniques. | 3        | 3        | 1        |
| CO5       | Anticipate algorithmic tendencies and the notion of diverse algorithm categories.                   | 3        | 3        | 3        |

#### Subject/Code No: Wireless Communication (Elective)/ 5CS5-11 LTP: 2L+0T+0P Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                           | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Recognizing Mobile Radio Propagation, Fading, Diversity Concepts and Channel Modeling.                  | 1        | 2        | 3        |
| CO2       | Relate the concept of cellular system and their technical challenges.                                   | 2        | 2        | 3        |
| CO3       | Correlate the Digital Signaling concept with fading channels.                                           | 1        | 2        | 3        |
| CO4       | Estimate the equalization techniques in wireless communication and error probability in faded channels. | 1        | 2        | 3        |
| CO5       | Summarize the impacts of Design Parameters, Beam Forming and MIMO Systems in wireless communication.    | 1        | 2        | 3        |

# Subject/Code No: Computer Graphics & Multimedia Techniques Lab/5CS4-21 LTP: \_ 0L+0T+2P Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                     | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Understand and apply the various predefined functions for drawing various geometric shapes                                        | 3        | 1        | 1        |
| CO2       | Explain and analyze various algorithms to scan, convert the basic geometrical primitives, transformations, Area filling, clipping | 3        | 1        | 1        |
| CO3       | Explain, illustrate and design various kinds of viewing and Projections.                                                          | 3        | 1        | 1        |
| CO4       | Explain, illustrate and design various kinds of clipping techniques                                                               | 3        | 1        | 1        |
| CO5       | Define, explain and apply various concepts associated with computer graphics to develop the animated game                         | 3        | 1        | 1        |

#### Subject/Code No: Compiler Design Lab/5CS4-22 LTP: 0L+0T+2P Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                      | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Recognize the various forms of tokens and lexemes                                  | 2        | 1        | 2        |
| CO2       | Calculate scanning by using the concept of finite state automation, parse          | 3        | 2        | 3        |
| CO3       | Arrange intermediate code for various statements in a programming language concept | 3        | 2        | 2        |
| CO4       | Organize the storage for heap structure                                            | 2        | 2        | 3        |
| CO5       | Construct various language patterns using flex tools they are also able to parse.  | 2        | 3        | 3        |

#### Subject/Code No: Analysis of Algorithm Lab/5CS4-23 LTP: 0L+0T+2P Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                             | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------|----------|----------|----------|
| CO1       | Observe the complexity of fundamental algorithms.         | 3        | 3        | 1        |
| CO2       | Relate sorting algorithms in real-world scenarios.        | 3        | 3        |          |
| CO3       | Construct a binary search tree using assorted algorithms. | 3        | 2        |          |
| CO4       | Test algorithms for finding minimum spanning trees.       | 3        | 3        | 1        |
| CO5       | Appraise algorithms for pattern matching.                 | 3        | 3        |          |

#### Subject/Code No: Advance Java Lab/5CS4-24 LTP: L+0T+2P Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                  | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Recognize the foundational principles of Java programming and identify tools used in program design environments.                              | 3        |          | 1        |
| CO2       | Utilize the principles of overloading, inheritance, and access controls in the context of class structures.                                    | 3        |          |          |
| CO3       | Implement the concept of interfaces and demonstrate the process of importing packages in Java.                                                 | 3        |          | 1        |
| CO4       | Formulate application designs incorporating file handling, exception management, and multithreading.                                           | 3        |          |          |
| CO5       | Construct applications through the utilization of applets, and create intricate polygon designs, demonstrating creative and evaluative skills. | 3        |          |          |

#### Subject/Code No: Digital Image Processing/6CS3-01 LTP: 2L+0T+0P Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|----------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Illustrate the fundamental concepts of Digital Image Processing System                       | 1        | 3        | 2        |
| CO2       | Demonstrate various transformations and filtering techniques on Images in different domains. | 1        | 3        | 2        |
| CO3       | Distinguish the causes for image degradation and compare the image restoration techniques.   | 1        | 3        | 2        |
| CO4       | Distinguish various image compression and segmentation techniques.                           | 2        | 3        | 2        |
| CO5       | Categorize different image segmentation and representation algorithms and techniques         | 2        | 3        | 2        |

#### Subject/Code No: Machine Learning/6CS4-02 LTP: 3L+0T+0P Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                    | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Apply supervised machine learning algorithms to real-time data to generate predictive insights.                  | 3        |          | 3        |
| CO2       | Analyze real-world data with unsupervised machine learning algorithms to identify patterns and make predictions. | 3        |          | 3        |
| CO3       | Evaluate different feature extraction and selection methods.                                                     | 3        |          | 3        |
| CO4       | Identify the different types of semi supervised learning and reinforcement learning algorithms.                  | 3        |          | 3        |
| CO5       | Develop and implement recommender systems and deep learning models to make predictions and recommendations.      | 3        |          | 3        |

#### Subject/Code No: Information Security System/6CS4-03 LTP: 2L+0T+0P Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                      | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Identify services that enhance the security and its mechanism.                                                                                                     | 1        | 2        | 2        |
| CO2       | Classify security attacks on information over network. Describe and apply classical encryption techniques.                                                         | 1        | 1        | 2        |
| CO3       | Compare conventional encryption algorithms & public key cryptography, and design Encryption algorithm to provide the Integration and confidentiality of a message. | 2        | 2        | 3        |
| CO4       | Understand the concept of hash function with application and message authentication code in security system.                                                       | 1        | 1        | 2        |
| CO5       | Classify key management schemes and discuss web security and transport level security protocols                                                                    | 1        | 1        | 2        |

#### Subject/Code No: Computer Architecture and Organization/6CS4-04 LTP: 3L+0T+0P Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                       | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Implement register transfer with the help of micro-operations.                      | 1        | 3        | 2        |
| CO2       | Analyze basic of computer organization, instructions, RISC & CISC characteristics.  | 1        | 3        | 2        |
| CO3       | Apply integer and floating type computer arithmetic techniques.                     | 1        | 3        | 2        |
| CO4       | Analyze basics of memory organization, allocation and management schemes.           | 1        | 3        | 2        |
| CO5       | Assess modes of transfer and input output interface, interrupts and DMA processing. | 1        | 3        | 2        |

#### Subject/Code No: Artificial Intelligence/6CS4-05 LTP: 2L+0T+0P Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                               | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Recall and identify distinct approaches in AI, with a specific emphasis on significant techniques such as search algorithms, knowledge representation, planning, and constraint management. | 3        | 3        | 1        |
| CO2       | Elaborate on the current outlook of Al as the examination of agents that receive percepts from the environment and carry out actions in response.                                           | 2        | 2        | 1        |
| CO3       | Experimenting with the recognition of significant challenges encountered by AI and the intricacy involved in solving typical issues within the domain.                                      | 2        | 2        | 1        |
| CO4       | Systematically analyze and evaluate the presented techniques, then strategically employ them to address real-world challenges.                                                              | 2        |          | 2        |
| CO5       | Create and evaluate advanced Al approaches, exemplified by intelligent systems and expert systems.                                                                                          | 3        | 3        | 2        |

#### Subject/Code No: Cloud Computing/6CS4-06 LTP: 3L+0T+0P Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                           | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Recognize the progression of cloud computing and its practical uses over time.                                                          | 3        | 3        | 1        |
| CO2       | Evaluate the structure, framework, and various models of cloud computing's design and architecture.                                     | 3        | 3        | 1        |
| СОЗ       | Measure an appraisal of virtualization technology and data centers, including their applications within the context of cloud computing. | 3        | 3        | 1        |
| CO4       | Write the understanding of security concerning data, data centers, and cloud services.                                                  | 3        | 2        | 1        |
| CO5       | Explain cloud services such as AWS and Google App Engine in terms of their integration capabilities with cloud applications.            | 3        | 2        | 1        |

#### Subject/Code No: Distributed System/6CS5-11 LTP: 2L+0T+0P Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                            | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Illustration of various architectures used to design distributed systems along with different types of operating systems.                | 2        | 3        |          |
| CO2       | Analysis of concurrent programming with inter process communication techniques, such as remote method invocation, remote events.         | 3        | 2        | 1        |
| CO3       | Evaluation of various distributed file system through case studies.                                                                      | 2        | 2        |          |
| CO4       | Analysis of distributed shared memory models and their failures in distributed computation.                                              | 3        | 2        |          |
| CO5       | Analyze various faults and their consequences and replicated data management through exploration different types of Distributed Systems. | 3        | 2        |          |

#### Subject/Code No: E Commerce & ERP/6CS5-13 LTP: 2L+0T+0P Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                              | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Describe the Ecommerce and ERP, delving into their respective requisites and the infrastructure needed to support them.                                    | 2        | 2        | 1        |
| CO2       | Examine the necessary infrastructure and software prerequisites to ensure the operational functionality of Ecommerce portals.                              | 2        | 2        | 1        |
| CO3       | Elaborate on the operational mechanisms of the Internet, web portals, and Ecommerce portals, while highlighting the essential infrastructure requirements. | 2        | 2        | 1        |
| CO4       | Apply the effectiveness of tools and techniques in the realm of digital marketing, considering their resultant impact.                                     | 2        | 2        | 1        |
| CO5       | Construct an XML-based database and formulate an XML application tailored for storing data.                                                                | 2        | 2        | 1        |

#### Subject/Code No: Digital Image Processing Lab/6CS4-21 LTP: 0L+0T+3P Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                      | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Apply image enhancement operation and image Arithmetic Operations on a given image | 1        | 3        | 2        |
| CO2       | Demonstrate image restoration and histogram processing on images                   | 1        | 3        | 2        |
| CO3       | Distinguish and compare various Noise and filtering algorithms on images           | 1        | 3        | 2        |
| CO4       | Illustrate image restoration and segmentation techniques on an image               | 2        | 3        | 2        |
| CO5       | Apply pattern recognition techniques on images using features extraction           | 2        | 3        | 2        |

#### Subject/Code No: Machine Learning Lab/6CS4-22 LTP: 0L+0T+3P Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                            | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|--------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Understand the mathematical and statistical prospective of machine learning algorithms through python programming.       | 3        |          | 3        |
| CO2       | Evaluate the machine learning models pre-processed through various feature engineering algorithms by python programming. | 2        |          | 2        |
| CO3       | Design and evaluate the supervised models through python in built functions.                                             | 3        |          | 3        |
| CO4       | Design and evaluate the unsupervised models through python in built functions.                                           | 3        |          | 3        |
| CO5       | Understand the basic concepts of deep neural network model and design the same.                                          | 3        |          | 3        |

#### Subject/Code No: Python Lab/6CS4-23 LTP: 0L+0T+3P Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                       | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | List various data types in python and use them to solve basic python programs.                                                      | 3        | 2        | 3        |
| CO2       | Describe Conditional statements and Looping structures concepts in python and apply these to create searching and sorting programs. | 3        | 2        | 3        |
| CO3       | Explain usage of List, Tuples, Set, Dictionary and Strings and use these to solve programming problems in different ways.           | 3        | 2        | 3        |
| CO4       | Discuss file handling concepts and apply them to create basic data handling programs.                                               | 3        | 2        | 3        |
| CO5       | Understand various built-in python functions and formulate user-defined functions.                                                  | 3        | 2        | 3        |

#### Subject/Code No: Mobile Application Development Lab/6CS4-24 LTP: 0L+0T+3P Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                    | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|--------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Construct fundamental concepts of Android programming.                                           | 3        | 2        | 3        |
| CO2       | Construct diverse Android applications focusing on layouts and immersive interactive interfaces. | 3        | 2        | 3        |
| CO3       | Build Android applications centered around server less mobile databases such as SQLite.          | 3        | 2        | 3        |
| CO4       | Demonstrate an application that records data onto the SD card                                    | 3        | 2        | 3        |
| CO5       | Design a compact Android Studio application.                                                     | 3        | 2        | 3        |

#### Subject/Code No: 7CS4-01/Internet of Things LTP: 3L+0T+0P Semester: 7th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                               | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Recognize the fundamental idea behind the Internet of Things (IoT).                                         | 3        | 3        | 3        |
| CO2       | Apply the connection of diverse sensors to Arduino/Raspberry Pi.                                            | 2        | 2        | 2        |
| CO3       | Execute wireless data transmission among distinct devices.                                                  | 1        | 1        | 1        |
| CO4       | Display proficiency in transferring sensor data to and from cloud-based servers.                            | 2        | 2        | 2        |
| CO5       | Evaluate the transformative impact of the Internet on Mobile Devices, Cloud Computing, and Sensor Networks. | 2        | 2        | 2        |

# Subject/Code No: 7AG6-60.2/Environmental Engineering and Disaster Management LTP: 3L+0T+0P Semester: 7th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                                                                                                                 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | State the natural environment and its relationships with human activities and realize the importance of ecosystem and biodiversity for maintaining ecological balance and know the objective and scope of the course.                                                                         |          |          | 3        |
| CO2       | Examine different types of pollutants, their distinguishing traits, and comprehend the significance of ensuring a secure water supply system and water quality.                                                                                                                               |          |          | 3        |
| CO3       | Evaluate strategies for managing solid waste, examining its attributes and the repercussions of solid waste on the environment. Assess both the quantity and attributes of solid waste, as well as its proper disposal methods. Recognize the significance of sanitation within this context. |          |          | 3        |
| CO4       | Assess the factors influencing the volume and attributes of wastewater, and analyze the processes involved in its treatment.                                                                                                                                                                  |          |          | 3        |
| CO5       | generalize various types of Disasters and their social and environmental impact and the associated risk and vulnerability and plan the disaster management.                                                                                                                                   |          |          | 3        |

#### Subject/Code No: 7CS4-21/Internet of Things Lab LTP: 0L+0T+3P Semester: 7th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Recognize the constituent Components within IoT Architecture.                                                                                | 1        | 1        | 1        |
| CO2       | Construct connections between Devices and Sensors, applying theoretical understanding.                                                       | 3        | 3        | 3        |
| CO3       | Implement wireless data transmission techniques among various devices.                                                                       | 1        | 1        | 1        |
| CO4       | Evaluate and select appropriate IoT Devices and Sensors based on provided Case Studies.                                                      | 1        | 1        | 1        |
| CO5       | Execute the upload and download of sensor data on cloud and server, culminating in a comprehensive and proficient utilization demonstration. | 1        | 1        | 1        |

#### Subject/Code No: 7CS4-22/Cyber Security Lab LTP: 0L+0T+3P Semester: 7th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                  | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Utilizing substitution and transposition techniques to achieve encryption and decryption of plain text, demonstrating comprehension and practical application. | 3        | 3        | 3        |
| CO2       | Design a solution for Key Exchange problem and understand the general attacks on system.                                                                       | 2        | 2        | 2        |
| CO3       | Analyse the data transferred in client server communication and working of various network protocol.                                                           | 2        | 2        | 2        |
| CO4       | Understand security-based tools like Wire shark, tcp dump, rootkits, snort etc.                                                                                | 2        | 2        | 2        |
| CO5       | Apply encryption, decryption techniques for secure data transmission, and digital signature generation, demonstrating understanding and application.           | 3        | 3        | 3        |

#### Subject/Code No: 8CS4-01/Big Data Analytics LTP: 3L+0T+0P Semester: 8th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                         | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Classify the building blocks of Big Data and review the growing field of Big Data Analytics.                          | 3        | 3        | 3        |
| CO2       | Compose the algorithm of data intensive problem using map reduce example.                                             | 1        | 1        | 1        |
| CO3       | Study and implement Writable Classes in Hadoop I/O.                                                                   |          |          |          |
| CO4       | Design and Implementation of Big Data Analytics using pig to solve data intensive problems and to generate analytics. |          |          |          |
| CO5       | Implement Big Data Activities using Hive.                                                                             | 1        | 1        | 1        |

#### Subject/Code No: 8TT6-60.2/Disaster Management LTP: 3L+0T+0P Semester: 8th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                              | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Discuss the practicalities of hazards, disasters with associated natural/social phenomena Understand this with disaster management theory (cycle, phases). |          |          | 3        |
| CO2       | List the existing global frameworks and existing agreements (e.g. Sendai).                                                                                 |          | ı        | 3        |
| СОЗ       | Choose a methods of community involvement as an essential part of successful DRR. Humanitarian Assistance/Support before and after disaster.               |          |          | 3        |
| CO4       | Technological innovations in Disaster Risk Reduction: Advantages and problems.                                                                             |          |          | 3        |
| CO5       | Experience on conducting independent DM study including data search, analysis and presentation of disaster case study.                                     |          |          | 3        |

#### Subject/Code No: 8CS4-21/Big Data Analytics Lab LTP: 0L+0T+2PSemester: 8th\_ Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                    | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Summarize and implement the basic data structure algorithms like Linked list, stack, queue, set and map in Java. | 3        | 3        | 3        |
| CO2       | Illustrate the knowledge and implement different file management in Hadoop.                                      | 2        | 2        | 2        |
| CO3       | Discuss the example of map reduce and develop the data application using variety of system.                      |          |          |          |
| CO4       | Evaluate and perform different operation on Data using Pig Latin.                                                |          |          |          |
| CO5       | Illustrate different operations on relations and databases using Hive.                                           | 2        | 2        | 2        |



#### Subject/Code No: 8CS4-22/Software Testing & Validation Lab LTP: 0L+0T+2P Semester: 8th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                           | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Understand the Automation Testing Approach using various tool.                          | 2        |          | 1        |
| CO2       | Analyse & discuss the performance of different websites using JMeter.                   | 2        |          | 1        |
| CO3       | Calculate the coverage analysis of programs using Eclemma tool.                         | 2        |          | 1        |
| CO4       | Describe & calculate the mutation score for various programs using jumble testing tool. | 2        |          | 1        |
| CO5       | Generate Test sequences and compare using Selenium tool for different websites.         | 2        |          | 1        |

### **Department of Artificial Intelligence & Data Science**

Program Name: Artificial Intelligence & Data Science

Subject/Code No: Technical Communication/3AID1-02 LTP: 2+0+0 Semester: III

**Course Outcome Mapping with Program Specific outcome** 

| CO Number | CO Definition                                                                                             | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Understand the process of technical communication in terms of LSRW.                                       |          | 1        | 2        |
| CO2       | Apply the concept of Technical Materials/Texts in various technical documents.                            |          | 1        | 2        |
| CO3       | Enhance the skills in the process of technical communication in terms of LSRW.                            |          | 1        | 2        |
| CO4       | Implement the basic concepts of technical communication in Technical Reports, articles and their formats. |          | 1        | 2        |

#### Subject/Code No: Advanced Engineering Mathematics/3AID2-01 LTP: 3+0+0 Semester: III Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                          | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|--------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Develop the concept of Probabilistic models and Random Variable                                        |          | 3        | 2        |
| CO2       | Alaysis through statistical methods like Normal distribution, Binomial Distrution etc                  |          | 3        | 2        |
| CO3       | Mathematical modeling for Industrial Problem using linear programing and solution by Graphical methods |          | 3        | 3        |
| CO4       | Finding Solution of real time problems with Mathematical modelling                                     |          | 3        | -        |
| CO5       | Evaluate and create model for problems related to transportation and assignment                        |          | 3        | 3        |

#### Subject/Code No: Digital Electronics/3AID3-04 LTP: 3+0+0 Semester: III Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                        | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|--------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Understand and apply number system in digital design                                 |          | 3        | 3        |
| CO2       | Apply the laws of Boolean algebra to represent and simplify digital circuits         |          | 3        | 2        |
| CO3       | Calculate the parameters of logic families and define their characteristics.         |          | 2        | 3        |
| CO4       | Develop competence in Combinational Logic Problem formulation and Logic Optimization |          | 3        | 2        |
| CO5       | Classify the different types of flip-flops and design various sequential circuits    |          | 3        | 3        |

#### Subject/Code No: Data Structure and Algorithms/3AID4-05 LTP: 3+0+0 Semester: III Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                        | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Know the concept of stack operations and its implementation to solve real time problems              | 3        | 1        |          |
| CO2       | Recognize the knowledge of Linked List and Queues to design algorithms for complex engineering tasks | 3        | 2        |          |
| CO3       | Analyze and design efficient searching and sorting techniques                                        | 2        | 2        |          |
| CO4       | Evaluate problems by storing data in tree structure and performing basic operations                  | 3        | 3        |          |
| CO5       | Apply graph concept for complex problem and understand hasing                                        | 3        | 3        |          |

#### Subject/Code No: Object Oriented Programming/3AID4-06 LTP: 3+0+0 Semester: III Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                        | PS01 | PS02 | PS03 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|------|------|------|
| CO1       | Knowing the basic knowledge of object-oriented programming language constructs.                                                      | 3    | 3    | -    |
| CO2       | Discussing and identifying the concept of reference, dynamic memory allocation and concept of various types of functions in classes. | 3    | 3    | -    |
| CO3       | Apply inheritance and it's types in real time problems.                                                                              | 3    | 3    | 1    |
| CO4       | Implement concept of polymorphism to perform different types of bindings.                                                            | 3    | 3    |      |
| CO5       | Create application using I/O and file handling with exception handling.                                                              | 3    | 3    | -    |

#### Subject/Code No: Software Engineering / 3AID4-07 LTP: 3+0+0 Semester: III Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                         | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Decompose the given project in various phases of a lifecycle.                                         | 3        | 3        |          |
| CO2       | Choose appropriate process model depending on the user requirements.                                  | 3        | 3        | 1        |
| CO3       | Perform various life cycle activities like Analysis, Design, Implementation, Testing and Maintenance. | 3        | 3        |          |
| CO4       | Know various processes used in all the phases of the product.                                         | 3        | 3        | 1        |
| CO5       | Analyse the knowledge, techniques, and skills in the development of a software product.               | 3        | 3        | 1        |

#### Subject/Code No: Data Structures Lab/3AID4-21 LTP: 0+0+3 Semester: III Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|----------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Understand and examine the concept of array & its storage                                    | 3        | 3        | -        |
| CO2       | Illustrate the implementation of basic data structure using an array.                        | 3        | 3        | 2        |
| CO3       | Analyse and compare different searching and sorting techniques                               | 3        | 3        | 3        |
| CO4       | Develop programs to perform operations on Non-linear Data Structures such as Tree and Graphs | 3        | 2        | -        |
| CO5       | Design and use different sorting algorithms                                                  | 3        | 3        | -        |

#### Subject/Code No: Object Oriented Programming LAB/3AID4-22 LTP: 0+0+3 Semester: III Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                              | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|----------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Understand the concept of C++ programming language while evaluating different access specifiers to define member function. | 3        | 3        | 1        |
| CO2       | Implement memory allocation techniques and various inbuilt functions.                                                      | 3        | 3        | 1        |
| CO3       | Know inheritance and analyse the types of inheritance.                                                                     | 3        | 3        | 1        |
| CO4       | Apply the concept of polymorphism to perform different types of bindings.                                                  | 3        | 3        | 1        |
| CO5       | Develop and use of application related to I/O and file handling with exception handling.                                   | 3        | 3        | 1        |

#### Subject/Code No: Software Engineering Lab/3AID4-23 LTP: 0+0+3 Semester: III Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                     | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Understand the software engineering methodologies involved in the phases for project development. | 3        | 3        |          |
| CO2       | Know about open-source tools used for implementing software engineering methods.                  | 3        | 3        |          |
| CO3       | Develop product-startups implementing software process models in software engineering methods.    | 3        | 3        |          |
| CO4       | Understand Open-source Tools: StarUML / UMLGraph / Topcased.                                      | 3        | 3        |          |
| CO5       | Discuss and analyse how to develop software requirements specifications for a given problem.      | 3        | 3        |          |

#### Subject/Code No: Digital Electronics Lab/3AID4-24 LTP: 0+0+3 Semester: III Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                     | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | List different types of logic gates, identify their ICs and also verify their truth tables.                                                       |          | 2        | 2        |
| CO2       | Demonstrate the functioning of basic logic gates, adder, and subtractor using universal gates.                                                    |          | 2        | 2        |
| CO3       | Design a combinational circuit using MSI devices and verify its functionalities.                                                                  |          | 2        | 3        |
| CO4       | Develop various sequential circuit using Flip Flops and verify its functionalities.                                                               |          | 2        | 3        |
| CO5       | Formulate Various types of counters, Shift registers SISO, SIPO, PISO, PIPO using Flip-Flops and verify its functionalities using simulation tool |          | 2        | 2        |

#### Subject/Code No: Industrial Training/3AID7-30 LTP: 0+0+1 Semester: III Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                               | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Compose an interest in research-oriented fields and devlop the ability to research for literature and prepare brief report  | 1        | 1        | 1        |
| CO2       | Identify the skills, competencies and points of view needed by professionals in the field most cloely related to the course | 2        | 1        |          |
| CO3       | Discuss and identify about topics of current intellectual importance                                                        |          |          | 2        |
| CO4       | Develop the communication skills and awareness about the industrial environment.                                            |          | 3        |          |
| CO5       | Revise Skill development for presentation.                                                                                  | 3        | 3        |          |

#### Subject/Code No: Discrete Mathematical Structures/4AID2-01 LTP: 3+0+0 Semester: IV Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                            | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|----------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Explain the various fundamental concepts of the Set theory and Logics.                                   | 3        |          | -        |
| CO2       | Illustrate the concept of relations and Diagraph to analyse the area of greatest impact for improvement. | 3        | 2        | -        |
| CO3       | Create the application part of lattices in distributed computing and Data mining.                        | 2        | 2        | -        |
| CO4       | Implementation of Graphs and their application in real time problem                                      | 3        | 2        | -        |
| CO5       | Analyse the concept of Algebraic Structures.                                                             | -        | 3        | -        |

#### Subject/Code No: Managerial Economics and Financial Accounting & 4AID1-03 LTP: 2+0+0 Semester: IV Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                               | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Recognize and describe the fundamental concepts of Economics and Financial Management and define the meaning of national income, demand, supply, cost, market structure, and balance sheet. |          | 3        | 1        |
| CO2       | Calculate and classify the domestic product, national product and elasticity of price on demand and supply.                                                                                 |          | 3        | 1        |
| CO3       | Draw the cost graphs, revenue graphs and forecast the impact of change in price in various perfect as well as imperfect market structures.                                                  |          | 3        | 2        |
| CO4       | Compare the financial statements to interpret the financial position of the firm and evaluate the project investment decisions.                                                             |          | 2        | 2        |

#### Subject/Code No: Microprocessors & Interfaces & 4AID3-04 LTP: 3+0+0 Semester: IV Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Discuss working of functional components of computer system.                 |          |          | 3        |
| CO2       | Demonstrate an overall functional structure of the Microprocessor.           |          | 3        | 3        |
| CO3       | Explain how interrupts are used to implement I/O control and data transfers. |          | 3        | 3        |
| CO4       | To learn the design aspects of I/O and Memory Interfacing circuits.          |          | 3        | 3        |
| CO5       | Implement their practical approach through laboratory experiments.           |          | 3        | 3        |

#### Subject/Code No: Database Management System & 4AID4-05 LTP: 3+0+0 Semester: IV Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                         | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Develop database using E-R diagram to represent simple database application scenarios | 3        | 3        |          |
| CO2       | Identify data from database using query language                                      |          | 3        |          |
| соз       | Apply normalization process to refine database schema                                 | 3        | 3        |          |
| CO4       | Describe transaction processing and Serializability                                   |          | 3        |          |
| CO5       | Interpret the concept of Concurrency Control and concept of Failure and Recovery      |          | 3        |          |

#### Subject/Code No: Theory of Computation & 4AID4-06 LTP: 3+0+0 Semester: IV Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                                                                        | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Analyse the concept of Finite Automata and distinguish between Non- Deterministic Finite Automata and Deterministic Finite Automata. Analyse regular sets and its properties. Composition of Regular Expression from Finite Automata and vice-versa. | 3        | 3        | 1        |
| CO2       | Understand the Context Free Grammar and its simplification.                                                                                                                                                                                          |          | 3        | 1        |
| CO3       | Asses the Context Free Language and generation of Push Down Automata for Context Free Grammar.                                                                                                                                                       | 3        | 3        | 1        |
| CO4       | Know the Turing Machine and its various types. Discuss the Hierarichy of formal languages.                                                                                                                                                           |          | 3        | 1        |
| CO5       | Evaluating the P, NP,NP complete, NP hard problems with the help of examples.                                                                                                                                                                        |          | 3        | 1        |

#### Subject/Code No: Data Communication and Computer Networks & 4AID4-07 LTP: 3+0+0 Semester: IV Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                   | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Describe the concept of signals and illustrate the functionality of OSI & TCP/IP reference model.                               | 3        | 1        | 1        |
| CO2       | Explain channel allocation, framing, flow control, and error control mechanisms and apply them using data link layer protocols. | 3        | 2        |          |
| CO3       | Determine the function of network layer, design subnets and calculate IP addresses for a network.                               | 3        | 2        |          |
| CO4       | Illustrate and Analyse different transport layer protocols and functions.                                                       | 3        | 2        |          |
| CO5       | Analyze the different protocols at Application layer.                                                                           | 3        | 2        |          |

#### Subject/Code No: Microprocessor and Interface Lab & 4AID4-21 LTP: 0+0+2 Semester: IV Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                       | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | knowing and apply the fundamentals of assembly level programming of microprocessors and microcontroller.                                            | 2        | 3        | 2        |
| CO2       | implement standard microprocessor real time interfaces including GPIO, serial ports, digital-to-analog converters and analog-to-digital converters. |          | 3        | 3        |
| CO3       | Interpret Troubleshoot interactions between software and hardware.                                                                                  | 1        | 3        | 3        |
| CO4       | Analyze abstract problems and apply a combination of hardware and software to address the problem.                                                  | 2        | 3        | 3        |
| CO5       | Use standard test and measurement equipment to evaluate digital interfaces.                                                                         |          | 3        | 3        |

#### Subject/Code No: Data Base Management System Lab & 4AID4-22 LTP: 0+0+3 Semester: IV Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Know how to make database schema for given scenrios                           | 3        | 1        | 1        |
| CO2       | Apply Keys and Constraints on database using RDBMS.                           | 3        | 2        |          |
| CO3       | Formulate aggregate functions                                                 | 3        | 2        |          |
| CO4       | Compose pl/sql including stored procedures, stored functions, cursors concept | 2        | 3        |          |
| CO5       | Develop Triggers, SQL and Procedural interfaces                               | 2        | 3        |          |

#### Subject/Code No: Network Programming Lab & 4AID4-23 LTP: 0+0+3 Semester: IV Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                         | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Describe the functioning of various networking equipment's and Standard Network Topologies            | 3        | 1        | 1        |
| CO2       | Explain and Define the LAN Installation and Configurations techniques                                 | 3        | 2        |          |
| CO3       | Design code for various Error correcting techniques and framing methods through C Language            | 3        | 2        |          |
| CO4       | Analyze and verify client and server involving UDP/TCP sockets using Socket Programming.              | 2        | 3        |          |
| CO5       | Demonstrate and determine the Communication Models between client and server using Network Simulator. | 2        | 3        |          |

#### Subject/Code No: Linux Shell Programming Lab/4AID4-24 LTP: 0+0+2 Semester: IV Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                      | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|----------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Know and apply Key Concepts and Commands for Shell Programming                                     | 3        | 3        | 2        |
| CO2       | Analyze the different security measures that can be implemented to protect the directory structure |          |          |          |
| CO3       | Define Approaches to Mastering Shell Quoting Mechanisms                                            | 2        | 3        | 2        |
| CO4       | Evaluate Patterns with simple Regular Expressions using Filters using various Command              | 3        | 2        | 3        |
| CO5       | Explain how to use scripting to enhance command output.                                            | 3        | 2        | 2        |



#### Subject/Code No: Java Lab/4AID4-25 LTP: 0+0+2 Semester: IV Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                          | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|--------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Use the syntax and semantics of java programming language and basic concepts of OOP.                   |          | 2        | 2        |
| CO2       | Develop reusable programs using the concepts of inheritance, polymorphism, interfaces and packages.    | 2        | 2        | 2        |
| CO3       | Apply the concepts of Multithreading and Exception handling to develop efficient and error free codes. | 3        | 2        | 2        |
| CO4       | Design event driven GUI and web related applications which mimic the real word scenarios.              | 3        | 2        | 2        |
| CO5       | Design the applications using applets and use of graphics in java.                                     | 3        | 2        | 2        |

### **Bachelor of Technology Civil Engineering**

Program Name: Civil Engineering Session: 2021-22

| S.<br>No. | Course<br>Code | Course Name                          | CO No. | Course Outcomes                                                                                                                                                                                           | PS01                                                                                                                                                                                                                                 | PS02 | PSO3 |   |
|-----------|----------------|--------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|---|
|           |                |                                      | CO 1   | Conduct investigations on interpolation and numerical integration based real world problems.                                                                                                              | 1                                                                                                                                                                                                                                    | 2    | -    |   |
|           |                |                                      | CO 2   | Analyze the various numerical methods and evaluate solution of problems based on differential equations, polynomial equations and Transcendental equations.                                               | 1                                                                                                                                                                                                                                    | -    | 3    |   |
| 1         | 3CE2-01        | Advance Engineering<br>Mathematics-I | CO 3   | Evaluate Laplace transform and inverse Laplace transforms to solve Initial Value Problem (IVP).                                                                                                           | 3                                                                                                                                                                                                                                    | ı    | -    |   |
|           |                |                                      | CO 4   | Apply Fourier transforms and inverse Fourier transforms to solve Initial Value Problem (IVP) and Boundary Value Problem (BVP).                                                                            | -                                                                                                                                                                                                                                    | -    | 3    |   |
|           |                |                                      | CO 5   | Apply Z-transform in discrete system and evaluate solution of problems based on recurrence relations.                                                                                                     | 1                                                                                                                                                                                                                                    | -    | 2    |   |
|           |                | 3CE1-02 Technical Communication      |        | CO 1                                                                                                                                                                                                      | Apply basics of grammar, common error in writing and speaking, study of advanced grammar, editing strategies to achieve appropriate technical style of official documents such as Project Reports, Manuals, and Minutes of Meetings. | 1    | -    | 2 |
| 2         | 3CE1-02        |                                      | CO 2   | Investigate, judge and assess their linguistic ability which will get enhanced by Identifying key principles and delivery techniques of effective public speaking (listening, speaking, writing, reading) | 2                                                                                                                                                                                                                                    | -    | 2    |   |
|           |                |                                      | CO 3   | Outline Notes and create different kinds of technical documents, plan information collection along with analyzing factors and strategies for Information design and document design in a organization.    | 2                                                                                                                                                                                                                                    | 1    | 2    |   |
|           |                |                                      | CO 4   | Create emails and memos intended for an audience within the same company or team as well as to design Resume, Job Application, and Technical Reports.                                                     | 2                                                                                                                                                                                                                                    | -    | 3    |   |

|   |         |                                        |      | Apply and analyze the relation                                                                                                   |   |   |   |
|---|---------|----------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------|---|---|---|
|   |         |                                        | CO 5 | between load, shear force, bending moment and slope deflection.                                                                  | 1 | - | 3 |
|   |         |                                        | CO 1 | Analyze and evaluate Fundamental laws of mechanics.                                                                              | 1 | - | 2 |
|   |         |                                        | CO 2 | Evaluate structure by methods of joints and method of section.                                                                   | 2 | - | 1 |
| 3 | 3CE3-03 | Engineering Mechanics                  | CO 3 | Differentiate the concept of Moment of Inertia of any section.                                                                   | 2 | - | 1 |
|   |         |                                        | CO 4 | Analyze the principal of virtual works, different types of friction, Spring and their arrangement                                | 2 | 1 | - |
|   |         |                                        | CO 5 | Relate stresses and strain for a structure.                                                                                      | 1 | - | 2 |
|   |         |                                        | CO 1 | Analyze the importance of surveying and apply the methods for measuring angles and directions using various instruments.         | 2 | - | 1 |
|   | 3CE3-05 | SCE3-05 Surveying                      | CO 2 | Evaluate RL using levelling instruments of a given area.                                                                         | 2 | 3 | 3 |
| 4 |         |                                        | CO 3 | Analyze the different type of curve in field.                                                                                    | 2 | 2 | 3 |
|   |         |                                        | CO 4 | Apply the concept of tachometry and photogrammetric in field.                                                                    | 2 | 0 | 2 |
|   |         |                                        | CO 5 | Create the setting out of work using different instruments (Total station and EDM).                                              | 2 | 2 | 3 |
|   |         | 3CE3-06 Fluid Mechanics                | CO 1 | Understand various types of fluid and its properties.                                                                            | 2 | - | 1 |
|   |         |                                        | CO 2 | Apply & analyze various pressures at a point in a static fluid, equilibrium condition and stability concept for floating bodies. | 3 | 2 | - |
| 5 | 3CE3-06 |                                        | CO 3 | Explain types, behaviour and various phenomenon to estimate the fluid discharge.                                                 | - | 2 | 2 |
|   |         |                                        | CO 4 | Apply the concept of Euler, Bernoulli's and momentum equation.                                                                   | 2 | 3 | - |
|   |         |                                        | CO 5 | Evaluate the concept of laminar flow through pipes, its characteristics and losses.                                              | - | 2 | 2 |
|   |         |                                        | CO 1 | Understand various types of fluid and its properties.                                                                            | 2 | - | 2 |
| 6 | 3CE3-07 | Building Materials and<br>Construction | CO 2 | Apply & analyze various pressures at a point in a static fluid, equilibrium condition and stability concept for floating bodies. | 2 | - | 2 |
|   |         | CONSTRUCTION                           | CO 3 | Explain types, behaviour and various phenomenon to estimate the fluid discharge.                                                 | 3 | - | 2 |
|   |         |                                        | CO 4 | Apply the concept of Euler, Bernoulli's and momentum equation.                                                                   | 3 | - | 3 |

|   |         |                     | CO 5 | Evaluate the concept of laminar flow through pipes, its characteristics and losses.                                                           | 3 | - | 2 |
|---|---------|---------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
|   |         |                     | CO 1 | Understand and evaluate the geology: Branches and Scope of Geology and the concepts of various geological materials and weathering processes. | 2 | 3 | - |
|   |         |                     | CO 2 | Analyze and evaluate the properties, behaviour and engineering significance of different type of rocks and minerals.                          | 1 | - | 3 |
| 7 | 3CE3-08 | Engineering Geology | CO 3 | Interpret and analyze different type of geological features: Fold, Fault, Joints and Unconformities.                                          | 1 | 1 | 2 |
|   |         |                     | CO 4 | Relate and evaluate Geophysical methods for Subsurface Analysis and understand the site selection parameters for Dam& Tunnel.                 | - | 2 | 2 |
|   |         |                     | CO 5 | Create and evaluate the basic concept of remote sensing & GIS in various fields of Civil Engineering.                                         | 1 | 2 | 2 |
|   |         |                     | CO1  | Use different conventional instruments of measurements in surveying in length, angle, levelling measurements.                                 | 2 | 1 | 1 |
|   | 0050.04 |                     | CO2  | Apply the procedures involved in field work and to work as a surveying team.                                                                  | 2 | - | 1 |
| 8 | 3CE3-21 | Surveying Lab       | CO3  | Determine the Height of an object by trigonometric levelling                                                                                  | 2 | 2 | 2 |
|   |         |                     | CO4  | Discuss and determine the modern tool of measurement in surveying like EDM, Total station etc.                                                | 1 | 2 | 2 |
|   |         |                     | CO5  | Conduct a survey, collect field data and plot them on a paper                                                                                 | 2 | 2 | - |
|   |         |                     | CO1  | Able to demonstrate the basic properties and characteristics of incompressible fluid in laboratory.                                           | 2 | 2 | 1 |
| 9 | 3CE3-22 | Fluid Mechanics Lab | CO2  | Able to demonstrate fundamental theorems governing fluid flows i.e., continuity, energy and momentum in laboratory.                           | 2 | 2 | 1 |
|   |         |                     | CO3  | Able to measure different fluid properties using various type of equipments like measurement of flow, pressure velocity and head loss.        | 2 | 2 | 1 |
|   |         |                     | CO4  | Classify the various pressure measuring devices.                                                                                              | 2 | 1 | 1 |

|    |         |                                             |      | Drow Orthographic projections of                                                                                                                                                          |   |   |   |
|----|---------|---------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
|    |         |                                             | CO1  | Draw Orthographic projections of Lines, Planes, and Solids                                                                                                                                | 1 | 1 | 1 |
|    |         |                                             | CO2  | Construct Isometric Scale, Isometric Projections and Views                                                                                                                                | 1 | 2 | - |
| 10 | 3CE3-23 | Computer Aided Civil<br>Engineering Drawing | CO3  | Draw Sections of various Solids including Cylinders, cones, prisms and pyramids                                                                                                           | 1 | 2 | - |
|    |         |                                             | CO4  | Draw projections of lines, planes, solids, isometric projections and sections of solids including Cylinders, cones, prisms and pyramids using AutoCAD                                     | 1 | 2 | 1 |
|    |         |                                             | CO1  | To study about selection criteria and uses of common building stones and dressing of stones.                                                                                              | 2 | 2 | 1 |
| 11 | 3CE3-24 | Civil Engineering Materials Lab             | CO2  | To understand the types and properties of bricks and their determination as per IS code such as water absorption, compressive strength, effloresces, dimension and tolerance test.        | 3 | 2 | 2 |
|    |         |                                             | CO3  | To know raw material of cements.                                                                                                                                                          | 2 | 2 | 1 |
|    |         |                                             | CO4  | To study the various properties of material i.e glass, kotastone etc.                                                                                                                     | 2 | 2 | 1 |
|    |         |                                             | CO1  | Students should be able to learn the significance of earth and its minerals.                                                                                                              | 2 | 2 | 2 |
|    |         |                                             | CO2  | Students should be able to learn the significance of rocks and its engineering properties.                                                                                                | 2 | 2 | 1 |
| 12 | 3CE3-25 | Geology Lab                                 | CO3  | Students should be able to understand the application of geology knowledge to civil engineering construction.                                                                             | 2 | 2 | 2 |
|    |         |                                             | CO4  | To know about various applications of remote sensing techniques.                                                                                                                          | 1 | 2 | 2 |
|    |         |                                             | CO 1 | Apply concept of probability and evaluate solutions of real-world problems.                                                                                                               | - | 2 | 2 |
|    |         |                                             | CO 2 | Analyze standard probability distributions and evaluate solutions of real-world problems.                                                                                                 | - | - | 3 |
| 13 | 4CE2-01 | Advance Engineering<br>Mathematics-II       | CO 3 | Estimate the relationship between variables of databases of the problems in quantify and qualitative forms and solve problems by methods of correlation, regression and Rank correlation. | 3 | - | 2 |
|    |         |                                             | CO 4 | Explore the relationship between variables of databases of the problems and evaluate standard form of the problem by the method of least squares (Method of curve fitting).               | - | - | 3 |

|    |         |                                                         | CO 5 | Conduct investigation on hypothesis testing in statistical problems and evaluate solution of problem in appropriate form.                                                                                                                                                    | - | 2 | 2 |
|----|---------|---------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
|    |         |                                                         | CO 1 | Determine the objectives, nature, scope, role & responsibilities of a manager of a business undertaking.                                                                                                                                                                     | 2 | 2 | - |
|    |         |                                                         | CO 2 | Predict the demand for a product or product mix of a company & to analyze various factors influencing demand elasticity. Forecast & compute the future sales level of a product by using various quantitative & qualitative techniques and with the help of past sales data. | 2 | 2 | - |
| 14 | 4CE1-03 | Managerial Economics &<br>Financial                     | CO 3 | Differentiate the meaning, importance, sources, & uses of capital in an enterprise and to estimate the working capital requirements.                                                                                                                                         | 2 | 2 | - |
|    |         |                                                         | CO 4 | Know the meaning, importance, steps, methods, uses & limitations of Capital Budgeting & Market Structure.                                                                                                                                                                    | 2 | - | 1 |
|    |         |                                                         | CO 5 | Interpret, analyze, discuss & comment on the financial performance of a business unit through liquidity leverage, coverage, turn over & profitability ratios.                                                                                                                | - | 2 | 1 |
|    |         |                                                         | CO 1 | Understand the concepts of Digital Electronics.                                                                                                                                                                                                                              | - | - | 3 |
|    |         |                                                         | CO 2 | Interpret the Basic Electronics in measurements in Civil Engineering applications.                                                                                                                                                                                           | - | 1 | 2 |
| 15 | 4CE3-04 | Basic Electronics for Civil<br>Engineering Applications | CO 3 | Analyze and equip with Errors in measurements systems and to expose to Data Acquisition and Processing.                                                                                                                                                                      | - | - | 3 |
|    |         |                                                         | CO 4 | Apply skills of Sensors and to explain Various Sensor Characteristics.                                                                                                                                                                                                       | - | 1 | 2 |
|    |         |                                                         | CO 5 | To share them Image processing Tools and Mat lab codes on Images.                                                                                                                                                                                                            | - | 1 | 2 |
|    |         |                                                         | CO 1 | Understand and apply the concept of stress and strains and to evaluate stress and strains in different members.                                                                                                                                                              | 3 | 3 | - |
| 16 | 4CE3-05 | Strength of Materials                                   | CO 2 | Apply and analyze the Bending moment, Shear force and Axial thrust diagrams for statically determinate beams and the distribution of bending and shear stresses for simple and composite sections.                                                                           | 3 | 3 | - |

| Interpret and compare the elementary concepts of torsion, shear stress in solid and hollow circular shafts.  CO 4  Evaluate the short and long columns subjected to various loading conditions.  CO 5  Apply and analyze the relation between load, shear force, bending moment and slope deflection.  Understand dimensional analysis and analyze the various models, concepts and characteristics of boundary layer and furbulent flow.  CC 1  CC 2  CC 2  CC 3  Hydraulics Engineering  TO 3  Apply and analyze the various models, concepts and characteristics of boundary layer and furbulent flow.  CC 3  CC 4  Hydraulic machines like pumps, turbines: To apply and repair and non-uniform flow, to apply and evaluate gradually and rapidly varied flow in open channel flow.  CC 4  Apply and relate the performance of hydraulic machines like pumps, turbines: To apply, and relate the performance of hydraulic machines like pumps, turbines: To apply and relate the performance of hydraulic machines and sufficient analyze and stimate water ranget and estimate water requirement, delta, duty and base and various aspects of Design of Constitution of Constitution and site selection and the different requirement, delta, duty and base and various aspects of Cosign of Chanics and Selection and the different requirement, delta, duty and base and various aspects of Design of Constitution in canals and analyze Kennedy's theory and Lacey's theory.  Understand and analyze the different types of buildings, criteria for location and site selection and the different methods of drawing sun chart and comfort Consideration using climate modulating devices and evaluate the orientation criteria for tropical climate with the consideration of building by Laws and NBC Regulations.  Evaluate the principles of Planning and different factors affecting planning including Vast Shastra in Modern Building planning.  Interpret and compare the functional design and Accommodation requirements of different Buildings.  2 - Evaluate the Services in Buildings.                    |    |         |                        |      |                                                                                                                                                                                                     |   |   |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
| CO 4   Subjected to various loading conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |         |                        | CO 3 | elementary concepts of torsion, shear stress in solid and hollow                                                                                                                                    | 2 | 2 | ı |
| CO 5   between load, shear force, bending moment and slope deflection.   CO 1   Understand dimensional analysis and analyze the various models, concepts and characteristics of boundary layer and turbulent flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |         |                        | CO 4 | subjected to various loading                                                                                                                                                                        | 3 | 2 | 1 |
| CO 1   and analyze the various models, concepts and characteristics of boundary layer and turbulent flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |         |                        | CO 5 | between load, shear force, bending                                                                                                                                                                  | 3 | 3 | 1 |
| CO 2 and non-uniform flow, to apply and evaluate gradually and rapidly varied flow in open channel flow  Identify about the working of hydraulic machines like pumps, turbines: To apply and relate the performance of hydraulic machines like pumps, turbines: To apply and relate the performance of hydraulic machines and phenomenon, unit hydrograph, analyze the rainfall, and properties of aquifier: to analyze and estimate the runoff and peak runoff rate.  Apply and estimate the runoff and peak runoff rate.  Apply and estimate water requirement, delta, duly and base and various aspects of Design of Canal: To understand various approaches of cross section of channels and silt control in canals and analyze theory.  Understand and analyze the different types of buildings, criteria for location and site selection and the different methods of drawing sun chart and sun shading devices.  CO 2 Design of Canal: To understand and analyze the different methods of drawing sun chart and sun shading devices.  Apply and analyze the Climatic and comfort Consideration using climate modulating devices and evaluate the orientation criteria for tropical climate with the consideration of Building Bye Laws and NBC Regulations.  Evaluate the principles of Planning and different factors affecting planning including Vastu Shastra in Modern Building planning.  CO 4 Interpret and compare the functional design and Accommodation requirements of different Buildings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |         |                        | CO 1 | and analyze the various models, concepts and characteristics of                                                                                                                                     | 2 | - | 2 |
| Hydraulics Engineering  CO 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |         |                        | CO 2 | and non-uniform flow, to apply and evaluate gradually and rapidly varied flow in open channel flow                                                                                                  | 2 | - | 2 |
| CO 4   Description   Descripti |    |         |                        | CO 3 | hydraulic machines like pumps, turbines: To apply and relate the                                                                                                                                    | 2 | 3 | 3 |
| CO 5  CO 5  CO 6  CO 7  CO 8  CO 8  CO 9  CO 9  CO 1  CO 9  CO 1  CO 1  CO 1  CO 1  CO 1  CO 1  CO 2  CO 2  CO 2  CO 2  CO 2  CO 2  CO 3  CO 3  CO 3  CO 3  CO 3  CO 3  CO 4  CO 6  CO 1  CO 1  CO 1  CO 3  CO 4  CO 6  CO 1  CO 1  CO 1  CO 1  CO 3  CO 3  CO 4  CO 6  CO 6  CO 6  CO 7  CO 7  CO 7  CO 8  CO 9   | 17 | 4CE3-06 | Hydraulics Engineering | CO 4 | phenomenon, unit hydrograph, analyze the rainfall, and properties of aquifer: to analyze and estimate the runoff and peak runoff rate.                                                              | 3 | 2 | 2 |
| types of buildings, criteria for location and site selection and the different methods of drawing sun chart and sun shading devices.  Apply and analyze the Climatic and comfort Consideration using climate modulating devices and evaluate the orientation criteria for tropical climate with the consideration of Building Bye Laws and NBC Regulations.  CO 3  Building Planning  CO 3  Evaluate the principles of Planning and different factors affecting planning including Vastu Shastra in Modern Building planning.  Interpret and compare the functional design and Accommodation 3 2 - requirements of different Buildings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |         |                        | CO 5 | requirement, delta, duty and base and various aspects of Design of Canal: To understand various approaches of cross section of channels and silt control in canals and analyze Kennedy's theory and | 3 | 2 | 1 |
| CO 2   Comfort Consideration using climate modulating devices and evaluate the orientation criteria for tropical climate with the consideration of Building Bye Laws and NBC Regulations.    CO 3   Evaluate the principles of Planning and different factors affecting planning including Vastu Shastra in Modern Building planning.    CO 4   Interpret and compare the functional design and Accommodation requirements of different Buildings.    CO 4   CO 5   CO 6   CO 6   CO 6   CO 7   CO 7  |    |         |                        | CO 1 | types of buildings, criteria for location<br>and site selection and the different<br>methods of drawing sun chart and                                                                               | 2 | 3 | 1 |
| and different factors affecting planning including Vastu Shastra in Modern Building planning.  Interpret and compare the functional design and Accommodation 3 2 - requirements of different Buildings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18 | 4CE3-07 | Building Planning      | CO 2 | comfort Consideration using climate modulating devices and evaluate the orientation criteria for tropical climate with the consideration of Building Bye Laws and NBC Regulations.                  | 3 | 2 | - |
| CO 4 design and Accommodation 3 2 - requirements of different Buildings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |         |                        | CO 3 | Evaluate the principles of Planning and different factors affecting planning including Vastu Shastra in Modern Building planning.                                                                   | 3 | 1 | - |
| CO 5 Relate the Services in Buildings. 3 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |         |                        |      | design and Accommodation requirements of different Buildings.                                                                                                                                       |   |   | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |         |                        | CO 5 | Relate the Services in Buildings.                                                                                                                                                                   | 3 | 2 | - |

|    |         |                            | CO 1 | Apply the knowledge of properties and role of various ingredients like cement, aggregate, admixtures etc. to produce good quality concrete.           | 2 | 2   | - |
|----|---------|----------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|---|
|    |         |                            | CO 2 | Analyze properties of fresh and harden concrete by examining in lab and perform destructive, semi-destructive and non-destructive tests for concrete. | 3 | 3   | - |
| 19 | 4CE3-08 | Concrete Technology        | CO 3 | Categorize the concrete manufacturing process and selecting right step by step process to achieve workable, durable of fresh and harden concrete.     | 3 | 2   | - |
|    |         |                            | CO 4 | Design the concrete mix with suitable chemical admixture; this fulfils the required properties for fresh and hardened concrete.                       | 3 | 3   | - |
|    |         |                            | CO 5 | Create the advance concrete and develop such concrete by adding and manipulating composition.                                                         | 2 | 2 2 | - |
|    | -       |                            | CO1  | Explain basic properties of materials.                                                                                                                | 2 | 1   | 2 |
| 20 | 4CE3-21 | Material Testing Lab       | CO2  | Identify the test to be conducted for different properties of building materials.                                                                     | - | 1 2 | 2 |
| 20 | 40E3-21 | iviaterial resting Lab     | CO3  | Test for different properties of building materials.                                                                                                  | 2 |     | 1 |
|    |         |                            | CO4  | Analyze the test results for different properties.                                                                                                    | 1 | 1   | 2 |
|    |         |                            | CO1  | Describe the equipments used for behaviour and measurement of fluid in hydraulic structure                                                            | 1 | 1   | 3 |
|    |         |                            | CO2  | Apply characteristics of Pelton Wheel, hydraulic jump and Centrifugal Pump in civil engineering                                                       | 2 | 2   | 1 |
| 21 | 4CE3-22 | Hydraulics Engineering Lab | CO3  | Analyze the discharge by using various instruments like venturi meter Broad crested weir.                                                             | 2 | 1   | 2 |
|    |         |                            | CO4  | Evaluate momentum equation, Manning' & Chezy's coefficient of roughness for the bed of a given flume.                                                 | 1 | 1   | 2 |
|    |         |                            | CO1  | Create drawing of basic components of buildings.                                                                                                      | 3 | 2   | 2 |
| 22 | 4CE3-23 | Building Drawing           | CO2  | Identify the components of different buildings required as per their functional need.                                                                 | 3 | 1   | 1 |
|    |         |                            | CO3  | Create drawing of building masonry.                                                                                                                   | 3 | 2   | 1 |
|    |         |                            | CO4  | Draw the plan, section and elevation of a building                                                                                                    | 3 | 2   | 2 |

|    |         |                                       | CO1  | Identify the instruments required for a particular survey problem                                                                    | 1 | 2 | - |
|----|---------|---------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
|    |         |                                       | CO2  | Device a method to fulfill the desired objective.                                                                                    | 1 | 2 | 1 |
| 23 | 4CE3-24 | Advanced Surveying Lab                | CO3  | Conduct the survey experiment using appropriate instruments and procedure.                                                           | 2 | 2 | 1 |
|    |         |                                       | CO4  | Analyze the data obtained and get the results after necessary computations.                                                          | 2 | 2 | 1 |
|    |         |                                       | CO1  | Explain the Quality control test on ingredients of concrete.                                                                         | 1 | 1 | 2 |
| 24 | 3CE3-25 | Concrete Lab                          | CO2  | Conduct Quality Control test on ingredients of fresh and hardened concrete.                                                          | 3 | 2 | 2 |
|    |         |                                       | CO3  | Analyze the test on fresh and hardened concrete and Non-destructive test on concrete.                                                | 1 | 2 | 1 |
|    |         |                                       | CO4  | Design the concrete mix.                                                                                                             | 2 | 1 | 1 |
|    |         |                                       | CO 1 | Implement the basic concept of engineering economics and evaluate cost optimization.                                                 | 3 | 2 | - |
|    |         |                                       | CO 2 | Apply the safety provision in the construction industry.                                                                             | 3 | 2 | - |
| 25 | 5CE3-01 | Construction Technology and equipment | CO 3 | Analyze the safety in construction and evaluate safety requirements.                                                                 | 2 | 3 | - |
|    |         |                                       | CO 4 | Analyze the Construction Planning and Materials Management.                                                                          | 1 | 3 | 1 |
|    |         |                                       | CO 5 | Distinguish the different types of Construction Equipment and their Management.                                                      | 1 | 3 | 1 |
|    |         |                                       | CO 1 | Calculate the degree of indeterminacy of any structures.                                                                             | 3 | - | 1 |
|    |         |                                       | CO 2 | Analyze the indeterminate structures by different kinds of methods.                                                                  | 3 | - | 1 |
| 26 | 5CE3-02 | Structure Analysis- I                 | CO 3 | Analyze the indeterminate structures by different kinds of methods.                                                                  | 3 | - | 1 |
|    |         |                                       | CO 4 | Students will get the knowledge of elementary concepts of structural vibration.                                                      | 3 | - | - |
|    |         |                                       | CO 5 | Analyze the vibrating structure.                                                                                                     | 3 | - | 1 |
|    |         |                                       | CO 1 | Analyze the Singly reinforced beam and Design the Singly reinforced beam by Working Stress Method.                                   | 3 | 2 | 1 |
| 27 | 5CE3-03 | Design of Concrete Structures         | CO 2 | Differentiate the Singly reinforced beam & Doubly reinforced beam and Design the Doubly reinforced beam by using Limit State Method. | 1 | 3 | - |
|    |         |                                       | CO 3 | Analyze the beam for flexure, shear, torsion, bond and anchorage and development length.                                             | 1 | 2 | 3 |

|    |         |                             | CO 4 | Categorized and design the one way and two way concrete slab according IS 356 -2000.                                                                                          | 2 | 3 | 1 |
|----|---------|-----------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
|    |         |                             | CO 5 | Design the axially loaded, eccentrically loaded short columns, Isolated & Combined foundation.                                                                                | 3 | 2 | - |
|    |         |                             | CO 1 | Interpret the Objective, scope and outcome of the course.understand the soil constituents and classification of soil also apply the Engineering and Index properties of soil. | 3 | 2 | 1 |
| 28 | 5CE3-04 | Geotechnical Engineering    | CO 2 | Implement and analyze the concept of shearing strength of soil, Compaction of soil and vertical and horizontal stresses of soil.                                              | 3 | 2 | - |
|    |         |                             | CO 3 | Apply and analyze the Compressibility of soil, Consolidation characteristics and settlement of soil.                                                                          | 1 | 3 | - |
|    |         |                             | CO 4 | Differentiate the stability of slopes and Earth pressures on soil.                                                                                                            | 3 | 1 | - |
|    |         |                             | CO 5 | Implement and analyze the Bearing capacity and Site investigation of soil.                                                                                                    | 1 | 3 | - |
|    |         |                             | CO 1 | Apply appropriate methods of irrigation technique and evaluate water requirements for crop production.                                                                        | 3 | - | 1 |
|    |         |                             | CO 2 | Evaluate channels for appropriate water application in respective areas.                                                                                                      | 3 | - | 1 |
| 29 | 5CE3-05 | Water Resources Engineering | CO 3 | Design of various dams in respective areas.                                                                                                                                   | 3 | 2 | 1 |
|    |         |                             | CO 4 | Apply various cross-drainage structures in respective areas.                                                                                                                  | 3 | - | 1 |
|    |         |                             | CO 5 | Analyze appropriate hydrological phenomena and estimate watershed yield.                                                                                                      | 3 | - | - |
|    |         |                             | CO 1 | Implement the basic concept of hazard and disaster.                                                                                                                           | 2 | - | 2 |
|    |         |                             | CO 2 | Analyze the Disaster Management Terminology.                                                                                                                                  | 3 | - | 2 |
| 30 | 5CE5-12 | Disaster Management         | CO 3 | Distinguish and analyze the different types of disasters.                                                                                                                     | 2 | - | 2 |
|    | 0020 12 | 2.oute. management          | CO 4 | Analyze and demonstrate the disaster management cycle and identify safety tips.                                                                                               | 3 | - | 3 |
|    |         |                             | CO 5 | Relate the Disaster management system in India and evaluate the role of society in disaster management.                                                                       | 2 | - | 2 |

|    |         |                               | CO 1 | Describe the concept of Town Planning and different terminologies, town planning National Protocols                                                                                                     | 2 | -     | 2 |
|----|---------|-------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------|---|
| 24 | FOFF 42 | Town Diagram                  | CO 2 | Discuss town planning methodologies and significant impact on a project                                                                                                                                 | 3 | -     | 2 |
| 31 | 5CE5-13 | Town Planning                 | CO 3 | Apply the concept of town planning on real scenarios                                                                                                                                                    | 2 | -     | 2 |
|    |         |                               | CO 4 | Analyze effect of town planning on growth of a city                                                                                                                                                     | 3 | -     | 3 |
|    |         |                               | CO 5 | Conduct case studies of various towns of India                                                                                                                                                          | 2 | -     | 2 |
|    |         |                               | CO 1 | Analyze the sequence of construction activities and methods of construction of various structural elements                                                                                              | 3 | 2     | - |
| 32 | 5CE5-14 | Repair and Rehabilitation of  | CO 2 | Evaluate the conventional and modern materials that are commonly used in Civil Engineering construction                                                                                                 | 3 | -     | - |
| 32 | 3GE3-14 | Structures                    | CO 3 | Apply and differentiate various NDT (Non-Destructive Test) techniques.                                                                                                                                  | - | 1     | 3 |
|    |         |                               | CO 4 | Differentiate among various Repairing techniques and materials                                                                                                                                          | - | 1 3 - | - |
|    |         |                               | CO 5 | Conduct the investigation on the case studies of bridges, piers and different concrete structures.                                                                                                      | - |       | 3 |
|    |         |                               | CO 1 | Understand the fundamental concepts of ground improvement techniques in civil engineering construction activities                                                                                       | 3 | 1     | - |
|    |         |                               | CO 2 | Describe the different techniques of ground improvements                                                                                                                                                | 3 |       | - |
| 33 | 5CE5-15 | Ground Improvement Technique  | CO 3 | Apply knowledge of mathematics,<br>Science and Geotechnical<br>Engineering to solve problems in the<br>field of modification of ground<br>required for construction of Civil<br>Engineering structures. | 3 | 1     | - |
|    |         |                               | CO 4 | Illustrate reinforced wall design using steel strip or geo-reinforcement                                                                                                                                | 3 | 1     | - |
|    |         |                               | CO 5 | Use effectively the various methods of ground improvement techniques and outline the solution for problematic soils                                                                                     | 3 | 1     | - |
|    |         |                               | CO1  | Assess the bending moment and shear force for beams, columns, slabs and footings.                                                                                                                       | 1 | 2     | - |
| 34 | 5CE3-21 | CONCRETE STRUCTURES<br>DESIGN | CO2  | Analyze the design parameters of<br>the flexural members to fulfil the<br>requirements of WSM and Limit state<br>of Collapse for Flexure, shear and<br>torsion.                                         | 1 | 2     | - |

|    |          |                                          | CO3  | Design of flexural members for flexure, shear, bond, development length &Electrical Engineering curtailment of bar to fulfill the criteria of Limit State of Collapse for Flexure, shear and Torsion. | 1 | 2 | 2 |
|----|----------|------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
|    |          |                                          | CO4  | Analyze and design of column and column footings economically and suitably recommend the appropriate type according to site conditions                                                                | 1 | 2 | 2 |
|    |          |                                          | CO1  | Implement and analyze the properties of soil such as Grain size distribution, specific Gravity, liquid limit, plastic limit and density etc.                                                          | 2 | 1 | 1 |
| 35 | 5CE3-22  | Geotechnical Engineering Lab             | CO2  | Classify C-Ø values by unconfined compression Test Apparatus, Direct Shear Test Apparatus and Triaxial Test.                                                                                          | 2 | 2 | 1 |
|    |          |                                          | CO3  | Evaluate the differential free swell index, swelling pressure, CBR of soil.                                                                                                                           | 2 | 2 | 1 |
|    |          |                                          | CO4  | Interpret the compressibility parameters of soil by consolidation test, permeability of soil by constant and falling head methods.                                                                    | 2 | 2 | 1 |
|    |          |                                          | CO1  | LO1) Explain the basic concept of water resource engineering, canals, dams, well irrigation, cross drainage structure and hydrology.                                                                  | 2 | 2 | - |
| 36 | 5CE3-23  | Water Resource Engineering<br>Design Lab | CO2  | LO2) Apply the water resource concept in irrigation system, canals, diversion head works, dams, well irrigation, cross-drainage structure and hydrology.                                              | 2 | 2 | - |
|    |          | 200 <b>.g</b> .: 200                     | CO3  | LO3) Analyze the water requirement of crop, seepage losses in dam, forces acting on dam, run off and rain fall.                                                                                       | 2 | 2 | 1 |
|    |          |                                          | CO4  | LO3) Design of canal, surface and subsurface flows, dams like embankment and gravity dam, tube well.                                                                                                  | 2 | 2 | 2 |
|    |          |                                          | CO 1 | Understand the basic concept of building configuration & differentiate the types of building, shear walls, framed structure and Tube Structure.                                                       | 3 | 1 | - |
| 37 | 6CE03-01 | Wind & Seismic Analysis                  | CO 2 | Analyze the different types of design load as per Indian Standard Codes 875 Part-I, II & load Flow Concept in a Structure.                                                                            | 3 | 1 | - |
|    |          |                                          | CO 3 | Differentiate the Flat, Pitched and Mono slope roof and analyze the roofs with respect to wind load as per Indian standard code IS 875-III.                                                           | 3 | 1 | 1 |

|    | <u> </u> |                            |      |                                                                                                                                                                          |   |                     |   |
|----|----------|----------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------|---|
|    |          |                            | CO 4 | Analyze the frame structures for Earthquake load as per Indian standard code IS1893-I.                                                                                   | 3 | 1                   | 1 |
|    |          |                            | CO 5 | Differentiate the provision for earthquake resistance building as per Indian standard code IS 3326, IS13827, IS13828, IS13920 and IS13935.                               | 3 | 1                   | - |
|    |          |                            | CO 1 | Understand among various types of structures and Examine & Produce the Structure by Strain Energy method and Unit Load Method.                                           | 3 | 2                   | 2 |
|    |          |                            | CO 2 | Apply the basic principles of SFD & BMD for the rolling loads and mathematical problems with reference to rolling loads and ILD.                                         | 3 | 2                   | 1 |
| 38 | 6CE3-02  | Structural Analysis-II     | CO 3 | Evaluate between types of arches and evaluate the stability of arches.                                                                                                   | 1 | 2                   | - |
|    |          |                            | CO 4 | Analyze the concept of unsymmetrical bending and shear centre.                                                                                                           | 1 | 1 2 2 1 1 1 2 - 3 3 | 2 |
|    |          |                            | CO 5 | Analyze and Evaluate the Frame by using three different methods and Build & differentiate among these methods.                                                           | 1 |                     | 2 |
|    |          |                            | CO 1 | Analyze the various water quality standard ,Distinguish the water distribution system and design the various reservoir                                                   | 1 | 2                   | 3 |
|    |          |                            | CO 2 | Analyze the various water treatment methods, design and apply the various parameters used in the sewer system.                                                           | 3 | -                   | 2 |
| 39 | 6CE3-03  | Environmental Engineering  | CO 3 | Design the sewerage systems ,analyze the various Sewage characteristics Quality parameters and Distinguish the Standards of disposal in land                             | 3 | -                   | 1 |
|    |          |                            | CO 4 | Analyze the various treatment method of sewage ,Evaluate the various Pollution due to improper disposal of sewage, Distinguish the Wastewater Disposal and Refuse method | 2 | 3                   | 2 |
|    |          |                            | CO 5 | Analyze the Quantification of air pollutants, evaluate various control methods measures for Air pollution and noise pollution                                            | 3 | 2                   | 2 |
|    |          |                            | CO 1 | Analyze steel sections used in steel structures and the suitable sections for design.                                                                                    | 2 | 1                   | 1 |
| 40 | 6CE3-04  | Design of Steel Structures | CO 2 | Analyzing the different kinds of connection used in steel structures and being able to create the compression and tension member.                                        | 3 | 2                   | 1 |

|    | ı       |                                         | T    |                                                                                                                                                             | 1 |   |   |
|----|---------|-----------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
|    |         |                                         | CO 3 | Create the laterally supported and unsupported steel beams and analyze the gantry girder, plate girder and laterally loaded steel members.                  | 3 | 3 | 1 |
|    |         |                                         | CO 4 | Analyze and apply the different type's column bases.                                                                                                        | 2 | 2 | 1 |
|    |         |                                         | CO 5 | Analyze and create the truss girder and foot over bridge.                                                                                                   | 2 | 2 | 1 |
|    |         |                                         | CO 1 | To provide the student with the ability to estimate the quantities of item of works involved in buildings and bill of quantities                            | 2 | 2 | 2 |
| 44 | 0050.05 | 5.50.50.010.050                         | CO 2 | To provide the student with the ability to estimate the quantities of item of works involved in different projects                                          | 1 | 1 | 2 |
| 41 | 6CE3-05 | Estimating and Costing                  | CO 3 | To provide the student with the ability to do rate analysis                                                                                                 | 1 | 1 | 1 |
|    |         |                                         | CO 4 | Preparation of estimates for different works like roads, buildings, earth work, water supply etc.                                                           | 1 | - | 2 |
|    |         |                                         | CO 5 | To provide the student with the ability to valuation of properties                                                                                          | 2 | - | 2 |
|    |         |                                         | CO 1 | Analyze and characterization of solid waste, hazardous waste constituents.                                                                                  | 1 | - | 2 |
|    |         |                                         | CO 2 | Understand health and environmental issues related to solid waste management.                                                                               | 2 | 1 | 2 |
| 42 | 6CE5-12 | Solid and Hazardous Waste<br>Management | CO 3 | Apply steps in solid waste management-waste reduction at source, collection techniques, materials and resource recovery/recycling, transport of solid waste | - | 2 | 2 |
|    |         |                                         | CO 4 | Analyze treatment and disposal techniques, economics of the onsite vs. offsite waste management                                                             | - | 2 | 2 |
|    |         |                                         | CO 5 | Evaluate the effectiveness of a waste-to-energy facility in terms of energy production, emissions, and waste reduction.                                     | ı | - | - |
|    |         |                                         | CO 1 | Understand characteristics of road, road users and vehicle performance with traffic law                                                                     | 1 | 3 | 1 |
| 43 | 6CE5-13 | Traffic Engineering &<br>Management     | CO 2 | Analyze various traffic surveys and their interpretation with applications & significance.                                                                  | 1 | 2 | 1 |
|    |         |                                         | CO 3 | Evaluate various intersections, traffic signs and markings.                                                                                                 | 1 | 2 | 1 |
|    |         |                                         | CO 4 | Analyze road accidents its causes, effects, prevention, traffic and                                                                                         | 1 | 2 | 1 |

|    |         |                      | CO 5                                                     | Analyze Traffic Management System by Direct and indirect methods.                                                                                      | 1 | 1 | 1 |
|----|---------|----------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
|    |         |                      | CO 1                                                     | Explain different types of bridges, components and loadings as per Indian standards provisions                                                         | 1 | 3 | - |
|    |         |                      | CO 2                                                     | Apply the fundamental concept of bridge loadings on Steel and RCC bridges                                                                              | 1 | 2 | - |
| 44 | 6CE5-14 | Bridge Engineering   | CO 3                                                     | Analyze the RCC and steel bridges using Courbons and Hendry-Jaegar method                                                                              | 2 | 2 | - |
|    |         |                      | CO 4                                                     | Design of Bearings, Steel and RCC bridges according to IRC codal provisions                                                                            | 2 | 2 | - |
|    |         |                      | factors on the durability of different bridge materials. | Evaluate the impact of environmental factors on the durability of different bridge materials.                                                          | 3 | - | - |
|    |         |                      | CO 1                                                     | Define the use of rock mass classification systems (RMR & Q).                                                                                          | 1 | 1 | 1 |
|    |         |                      | CO 2                                                     | Explain methods for in situ investigation and laboratory testing of rock matrix and discontinuities.                                                   | 2 | - | 1 |
| 45 | 6CE5-15 | Rock Engineering     | CO 3                                                     | Apply the knowledge ofthe characteristics and the mechanical properties (strength and failure criteria) of rock mass, rock matrix and discontinuities. | 1 | 2 | 2 |
|    |         |                      | CO 4                                                     | Analyse the stress distribution (isotropic, anisotropic) in situ and around an opening in rock (competent rock, jointed rock mass, blocky rock)        | 3 | 2 | - |
|    |         |                      | CO 5                                                     | Analyze the potential environmental impact of rock excavation and suggest appropriate mitigation measures.                                             | 1 | 2 | 2 |
|    |         |                      | CO 1                                                     | Evaluate Photogrammetric and apply principles of Photogrammetric to create maps and their substitutes                                                  | 2 | 3 | 1 |
|    |         |                      | CO 2                                                     | Analyze the basic concept of remote sensing.                                                                                                           | 2 | 3 | - |
| 46 | 6CE5-16 | GIS & Remote Sensing | CO 3                                                     | Evaluate and analyze different types of platforms, sensors and their characteristics in Remote Sensing.                                                | 2 | 3 | - |
|    |         |                      | CO 4                                                     | Analyze and create the different types of information from different remote sensing data products using various image processing techniques.           | 1 | 3 | 2 |
|    |         |                      | CO 5                                                     | Create the basic concept of GIS and analyze the use of GIS tools for civil engineering purpose.                                                        | 2 | 3 | - |

|    |                  |                                                   |     | 11.1(10                                                                                                              |   |     |                                                                                 |   |   |
|----|------------------|---------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------|---|-----|---------------------------------------------------------------------------------|---|---|
|    |                  |                                                   | CO1 | Understand the water quality parameters their permissible limits and compute population forecasting water demand     | 2 | 2   | -                                                                               |   |   |
| 47 | 6CE3-21          | Environmental Engineering Design and Lab          | CO2 | Analyze the physical and chemical tests to be conducted for the water before supply.                                 | 2 | 2   | -                                                                               |   |   |
|    |                  | -                                                 | CO3 | Design of filters, tanks, densification units and transmission system                                                | 2 | 2   | 1                                                                               |   |   |
|    |                  |                                                   | CO4 | Design of sewer lines, storm water systems, aerobic & anaerobic treatment units                                      | 2 | 2   | -                                                                               |   |   |
|    |                  |                                                   | CO1 | Calculate the plastic moment of different cross section and design of bolted and welded connections                  | 2 | 1   | 1                                                                               |   |   |
| 48 | 6CE3-22          | 2 Steel Structures Design Lab                     | CO2 | Analyze and design the tension, compression & column bases member under axial and combined loading                   | 3 | 2   | 1                                                                               |   |   |
|    |                  |                                                   | CO3 | Discuss the pre-engineered buildings, bridges & trusses                                                              | 3 | 3   | 1                                                                               |   |   |
|    |                  |                                                   |     |                                                                                                                      |   | CO4 | Identify and demonstrate the various section of steel structures at field visit | 2 | 1 |
|    |                  |                                                   | CO1 | Able to prepare preliminary and detailed estimates by various methods.                                               | 2 | -   | 2                                                                               |   |   |
| 49 | 6CE3-23          | 6CE3-23 Quantity Surveying and Costing            | CO2 | Able to do rate analysis of various items of work                                                                    | 1 | 1   | 2                                                                               |   |   |
|    |                  |                                                   | CO3 | Able to evaluate earth work for road, canals ad channels.                                                            | 1 | 1   | 1                                                                               |   |   |
|    |                  |                                                   | CO4 | Able to do Valuation of Buildings and Properties.                                                                    | 1 | -   | 2                                                                               |   |   |
|    |                  |                                                   | CO1 | Understand concept of coefficient method (IS code) and apply it for analysis and design of continuous beams.         | 1 | 2   | 1                                                                               |   |   |
|    |                  | Water and Earth Detaining                         | CO2 | Analysis and design of circular domes with u.d.l. & concentrated load at crown                                       | 1 | 2   | -                                                                               |   |   |
| 50 | 6CE3-24          | Water and Earth Retaining<br>Structure design lab | CO3 | Classification of water tanks according to shape and design of rectangular, circular and intze type tanks.           | 1 | 2   | 2                                                                               |   |   |
|    |                  |                                                   | CO4 | Analysis and design of Cantilever Retaining Walls and introduction to counterfort and buttress type retaining walls. | - | 1   | 2                                                                               |   |   |
| 51 | 6CE3- 25         | Design Of Foundations                             | CO1 | Apply the theoretical knowledge of bearing capacity to design various types of shallow foundation.                   | 2 | 1   | 1                                                                               |   |   |
| 01 | 30 <u>2</u> 0 20 | 200.gr. Or Foundations                            | CO2 | Understand the design of pile foundation (covering both geotechnical and structural aspects)                         | 3 | 2   | 1                                                                               |   |   |

|     |               |                                |      | Discuss the different components of                                                                                                                                                                                                                                       |                                                                                                             |   |   |   |
|-----|---------------|--------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---|---|---|
|     |               |                                | CO3  | well foundation, its construction and design methods.                                                                                                                                                                                                                     | 3                                                                                                           | 3 | 1 |   |
|     |               |                                | CO4  | Use the theoretical knowledge of earth pressure to analyze and design of various retaining structures.                                                                                                                                                                    | 1                                                                                                           | 2 | 1 |   |
|     |               |                                | CO 1 | Discuss the planning, characteristics and development of the transportation system and classify the various road cross section elements and curves.                                                                                                                       | 2                                                                                                           | 2 | 2 |   |
|     |               |                                | CO 2 | Analyze the various properties, procedures of highway construction material and equipment's.                                                                                                                                                                              | 1                                                                                                           | 2 | 1 |   |
| 52  | 7CE3-01       |                                | CO 3 | Design and construction of flexible and rigid pavements as per IRC                                                                                                                                                                                                        | -                                                                                                           | 2 | 2 |   |
|     |               |                                | CO 4 | Analyze the types and Selection of Gauges, Selection of Alignment and Railway component.                                                                                                                                                                                  | 1                                                                                                           | 1 | 2 |   |
|     |               |                                | CO 5 | CO 5                                                                                                                                                                                                                                                                      | Design and planning of airport pavement by using various methods and modern trends in water transportation. | 1 | 1 | 2 |
|     |               |                                | CO 1 | Describe the principles of various digital modulation systems and their properties, including bandwidth, channel capacity, transmission over bandlimited Channels, inter-symbol interference (ISI), demodulation methods, and error performance in the presence of noise. | -                                                                                                           | 2 | 2 |   |
| 53  | 60.1          |                                | CO 2 | Apply the concepts to practical applications in telecommunication.                                                                                                                                                                                                        | -                                                                                                           | 3 | 2 |   |
|     |               |                                | CO 3 | Analyse communication systems in both the time and frequency domains.                                                                                                                                                                                                     | -                                                                                                           | 2 | 2 |   |
|     |               |                                | CO 4 | Design a communication system comprised of both analog and digital modulation techniques.                                                                                                                                                                                 | 2                                                                                                           | - | 2 |   |
|     |               |                                | CO 1 | Explain the smart grids components and architecture.                                                                                                                                                                                                                      | 2                                                                                                           | - | 2 |   |
| F.4 | 7506.60.0     | Mioro Custom Const Taskingland | CO 2 | Apply different measuring methods and sensors used in smart grid.                                                                                                                                                                                                         | 2                                                                                                           | 3 | 2 |   |
| 54  | 7EC6.60.2     | Micro System Smart Technology  | CO 3 | Analyze various renewable energy technologies.                                                                                                                                                                                                                            | -                                                                                                           | 2 | 2 |   |
|     |               |                                | CO 4 | Designing of various smart grid technology-based devices.                                                                                                                                                                                                                 | _                                                                                                           | 1 | 2 |   |
| 55  | 7ME6-<br>60.1 | Finite Element Analysis        | CO 1 | To Apply direct stiffness, Rayleigh-<br>Ritz, Galerkin and other<br>mathematical methods to solve<br>engineering problems.                                                                                                                                                | 1                                                                                                           | 2 | - |   |

|    |           |                                                    | CO 2                                      | To Analyze 1D and 2D problems of statics, fluid mechanics and heat transfer.                                                                         | 1                                                                                                  | 2 | - |   |
|----|-----------|----------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---|---|---|
|    |           |                                                    | CO 3                                      | To evaluate the Eigenvalues and Eigenvectors for stepped bar and beam, explain nonlinear geometric and material non linearity.                       | 1                                                                                                  | 2 | 3 |   |
|    |           |                                                    | CO 4                                      | To Create solutions for Higher order problems of the engineering field.                                                                              | ı                                                                                                  | 1 | 2 |   |
|    |           |                                                    | CO 1                                      | Describe the basic concept of Quality Management.                                                                                                    | 2                                                                                                  | 2 | - |   |
|    | 7ME6-     | Quality Management  Electrical Machines and Drives | CO 2                                      | Explain a system, component, and process to meet desired needs within limits using modeling process quality and learn the concept of control charts. | 2                                                                                                  | - | 1 |   |
| 56 | 7EE6-60.1 |                                                    | CO 3                                      | Illustrate the concept of Quality Assurance, Acceptance sampling and study quality systems like ISO9000, ISO 13000 and Six Sigma.                    | 2                                                                                                  | 3 | - |   |
|    |           |                                                    |                                           | CO 4                                                                                                                                                 | Identify engineering problems, concept of reliability and Taguchi Method of Design of experiments. | 1 | - | 2 |
|    |           |                                                    | CO 1                                      | Understand the constructional details and principle of operation of rotating electrical machines.                                                    | 3                                                                                                  | - | - |   |
|    |           |                                                    | ZEEC CO.A. Electrical Markings and Drives | CO 2                                                                                                                                                 | Acquire knowledge about the working principle and various aspects of electric drives.              | 3 | 2 | - |
| 57 |           |                                                    | CO 3                                      | Study and analyze the various control techniques for speed control on various electric drives.                                                       | -                                                                                                  | 3 | - |   |
|    |           |                                                    | CO 4                                      | Develop design knowledge on how to design the speed control and current control loops of an electric drive.                                          | -                                                                                                  | - | 3 |   |
|    |           |                                                    | CO1                                       | Classify and describe various renewable energy sources.                                                                                              | -                                                                                                  | 2 | 1 |   |
|    |           |                                                    | CO2                                       | Predict possible renewable energy sources.                                                                                                           | 1                                                                                                  | 2 | - |   |
| 58 | 7EE6-60.2 | Power Generation Sources                           | CO3                                       | Illustrate the renewable energy sources.                                                                                                             | -                                                                                                  | - | 3 |   |
|    |           |                                                    | CO4                                       | Re-organize energy sources.                                                                                                                          | 2                                                                                                  | 1 | - |   |
|    |           |                                                    | CO5                                       | Prioritize all other renewable energy sources as needed by societal application.                                                                     | -                                                                                                  | 1 | 2 |   |
| 50 | 7CS6-     | Quality Management / ISO 0000                      | CO1                                       | Understand the importance of quality management and the ways individuals can affect quality.                                                         | 1                                                                                                  | 2 | - |   |
| 59 | 60.1      |                                                    | CO2                                       | Analyse the components of a quality management system and the role of the quality management system.                                                 | -                                                                                                  | 3 | - |   |

|    |               |                                                   | CO3  | Apply quality management to improve computer-based systems.                                                                                              | 1                                                                                                                                                                               | 3 | 2 |   |
|----|---------------|---------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
|    |               |                                                   | CO4  | Design Various components of quality system to avoid failures and rectification.                                                                         | 1                                                                                                                                                                               | - | 3 |   |
|    |               |                                                   | CO1  | Develop The Understanding of Cybercrime and legal Perspectives of Security Implications for Organizations in respect to the Mobile and Wireless Devices. | -                                                                                                                                                                               | 2 | - |   |
|    |               |                                                   | CO2  | Analyze different cyber offences & attacks and Determine How a Criminals plan the cyber-Attacks.                                                         | -                                                                                                                                                                               | 3 | - |   |
| 60 | 7CS6-<br>60.2 |                                                   | CO3  | Understanding the cyber security solutions and use of cyber security Tools in Cybercrime.                                                                | ı                                                                                                                                                                               | 3 | 1 |   |
|    |               |                                                   | CO4  | CO4                                                                                                                                                      | Evaluate and communicate the Management Perspective human role in security systems with an Organizational, emphasis on ethics, social engineering vulnerabilities and training. | - | 2 | 1 |
|    |               |                                                   | CO1  | Understand the importance and determination of physical properties of aggregates.                                                                        | 2                                                                                                                                                                               | 1 | 2 |   |
| 61 | 7CE3-21       | -21 Road Material Testing Lab                     |      | CO2                                                                                                                                                      | Evaluate and analyse the suitability of materials from data collected by physical tests done on aggregates and bitumen.                                                         | - | 1 | 2 |
| 01 |               |                                                   | CO3  | Design of different bituminous layers of flexible pavement and compare their results with IRC/MoRTH recommendations.                                     | 2                                                                                                                                                                               | 2 | 1 |   |
|    |               |                                                   | CO4  | Prepare a formal report describing complex design procedures and results.                                                                                | 1                                                                                                                                                                               | 1 | 2 |   |
|    |               |                                                   | CO1  | Understand the basic concepts of Different types of Knots, Different types of plan layout in field and type of scaffolding and ladders.                  | 2                                                                                                                                                                               | 2 | - |   |
| 62 | 7CE3-22       | Professional Practices & Field<br>Engineering Lab | CO2  | Identify the preparation Specification and bar bending schedule for Reenforcement works.                                                                 | 1                                                                                                                                                                               | 1 | 2 |   |
|    |               |                                                   | CO3  | Analysis of Estimation and Valuation methods of buildings and properties.                                                                                | 1                                                                                                                                                                               | 2 | 1 |   |
|    |               |                                                   | CO4  | Understand the use and type of scaffolding and ladders.                                                                                                  | 1                                                                                                                                                                               | 1 | 1 |   |
| 63 | 7CE3-23       | Soft Skills Lab                                   | CO 1 | Develop a strategy for fostering a positive team environment through effective communication.                                                            | 1                                                                                                                                                                               | - | 2 |   |
|    |               |                                                   | CO 2 | Identify different types of nonverbal communication cues.                                                                                                | 1                                                                                                                                                                               | - | 2 |   |

|    |         |                                            |      | Compare and contrast different                                                                                        |   |   |   |
|----|---------|--------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------|---|---|---|
|    |         |                                            | CO 3 | communication styles and their appropriateness in various situations.                                                 | 1 | - | 2 |
|    |         |                                            | CO 4 | Apply conflict resolution techniques to resolve a simulated interpersonal conflict.                                   | 2 | 2 | - |
|    |         |                                            | CO 1 | Define water and waste water treatment plant process and design.                                                      | 2 | 2 | - |
|    | 7CE3-24 | Environmental Monitoring and<br>Design Lab | CO 2 | Discuss various methods to measure air, noise, water and waste water pollution.                                       | 2 | 2 | - |
| 64 |         |                                            | CO 3 | Apply various equipment, technology to demonstrate air, noise pollution, water and waste water treatment process.     | 2 | 2 | 1 |
|    |         |                                            | CO 4 | Examine and analyze the quantification of air and noise pollutants, water and waste water pollution.                  | 2 | 2 | 2 |
|    |         |                                            |      | Understand organizational issues                                                                                      |   |   |   |
|    | 7CE7-30 |                                            | CO 1 | including teams, attitudes and define work-life balance and its impact on organizations and employees.                | 1 | - | 2 |
| 65 |         | CE7-30 Practical Training                  | CO 2 | Understand of current technologies in field of civil engineering and Analyze problems and suggest possible solutions. | 1 | - | 2 |
|    |         |                                            | CO 3 | Develop effective group communication, presentation, self-management and report writing skills.                       | 1 | - | 2 |
|    |         |                                            | CO 4 | Summarize and illustrate the work done during the internship, both in writing and through oral presentation.          | 1 | - | 2 |
|    |         |                                            | CO 1 | Build a technical document by organizing a detailed literature survey.                                                | 1 | 1 | 3 |
| 66 | 7CE7-40 | Seminar                                    | CO 2 | Compare different concepts available in literature about a specific topic.                                            | 1 | 1 | 3 |
|    |         |                                            | CO 3 | Conclude with literature gap about the topic and recommendations for future scope.                                    | 2 | 1 | 3 |
|    |         |                                            | CO 4 | Develop effective presentation, self-confidence and writing skills.                                                   | - | - | 3 |
|    |         |                                            | CO 1 | Evaluate the financial evaluation of projects.                                                                        | 1 | 1 | 3 |
| 67 | 8CE3-01 | Project Planning and                       | CO 2 | Analyze the project scheduling of PERT, CPM and other.                                                                | 1 | 1 | 3 |
| ]  | 352001  | Construction Management                    | CO 3 | Understand the cost and time control.                                                                                 | 2 | 1 | 3 |
|    |         |                                            | CO 4 | Understand contract management and dispute settlement.                                                                | 1 | 1 | 3 |

|     | <u> </u>                                                                                                            |                                                |                                                                                                                                                                                                         | Understand the sefety measure and                                                                                                        |   |   |   |
|-----|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
|     |                                                                                                                     |                                                | CO 5                                                                                                                                                                                                    | Understand the safety measure and use of software in safety & monitoring of project.                                                     | 1 | 1 | 2 |
|     |                                                                                                                     |                                                | CO 1                                                                                                                                                                                                    | Understanding of Big Data and their needs in Industry.                                                                                   | 2 | 1 | - |
| 68  | 8CS6-<br>60.1                                                                                                       | Big Data Analytics (Open                       | CO 2                                                                                                                                                                                                    | Designing of Hadoop and Google File System.                                                                                              | - | 2 | 2 |
|     | 00.1                                                                                                                | Elective-II)                                   | CO 3                                                                                                                                                                                                    | Analysis of Map Reduce and their basic programs map reduce.                                                                              | 2 | 1 | 2 |
|     |                                                                                                                     |                                                | CO 4                                                                                                                                                                                                    | Design an Hive Data system.                                                                                                              | 2 | - | 2 |
|     |                                                                                                                     |                                                | CO 1                                                                                                                                                                                                    | To Determine and analyse the domain name system (DNS) in internet and various cybercrime offence in cyber space.                         | - | 2 | - |
|     | 8CS6- 60.2 IPR, Copyright and Cyber Law of India (Open Elective-II)  CO 3  CO 4  CO 2  Energy Audit and Demand side | 8CS6- IPR Convigant and Cyber Law of -         | CO 2                                                                                                                                                                                                    | To understand the concept of Intellectual Property and Intellectual Property Rights with special reference to India and abroad.          | - | 2 | 1 |
| 69  |                                                                                                                     | CO 3                                           | To Apply intellectual property law principles including the copyright law, patents law, designs and trademarks, to real problems and analyse the social impact of intellectual property law and policy. | -                                                                                                                                        | 3 | 2 |   |
|     |                                                                                                                     |                                                | CO 4                                                                                                                                                                                                    | To Study the Jurisdiction Issues in Cyber Space and Competition Law in India.                                                            | 2 | - | 1 |
|     |                                                                                                                     |                                                | CO1                                                                                                                                                                                                     | Understand the current Energy Scenarios in India.                                                                                        | - | 2 | - |
| 70  |                                                                                                                     | 6-60.1 Energy Audit and Demand side Management | CO2                                                                                                                                                                                                     | Illustrate the energy auditing of motors, lighting system and building, by appropriate analysis methods through survey instrumentations. | 2 | - | 1 |
| 10  | OLLO-00.1                                                                                                           |                                                | CO3                                                                                                                                                                                                     | Understand the Electrical-Load Management and Demand side Management.                                                                    | - | 3 | - |
|     |                                                                                                                     |                                                | CO4                                                                                                                                                                                                     | Apply the Energy Conservation in transport, agriculture, household and commercial sectors.                                               | 2 | - | 3 |
|     |                                                                                                                     |                                                | CO1                                                                                                                                                                                                     | Learn about soft computing techniques and their applications.                                                                            | 3 | - | - |
|     |                                                                                                                     |                                                | CO2                                                                                                                                                                                                     | Analyze various neural network architectures.                                                                                            | 3 | - | _ |
| 71  | 8EE6-60.2                                                                                                           | Soft Computing                                 | CO3                                                                                                                                                                                                     | Define the fuzzy systems.                                                                                                                | 3 | - | - |
| ' ' | 3223 00.2                                                                                                           | ook oompaning                                  | CO4                                                                                                                                                                                                     | Understand the genetic algorithm concepts and their applications.                                                                        | 3 | - | - |
|     |                                                                                                                     |                                                | CO5                                                                                                                                                                                                     | Identify and select a suitable Soft Computing technology to solve the problem.                                                           | 3 | - | - |
| 72  | 8ME6-<br>60.2                                                                                                       | Simulation Modeling and<br>Analysis            | CO1                                                                                                                                                                                                     | Student will able to define the simulation modeling and analyze the practical situations in organizations.                               | 2 | - | 1 |

|      |               |                               | CO2  | Examine the random numbers and random variates approach in different applications.                                                                                                            | 1 | 2 | - |
|------|---------------|-------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
|      |               |                               | CO3  | Investigate the sensitivity of simulation solutions for realistic problems.                                                                                                                   | 1 | 2 | - |
|      |               |                               | CO4  | Evaluate the solution based on realistic situation including existing standards and propose the suitable solution with justification.                                                         | 1 | 2 | - |
|      |               |                               | CO1  | Describe the characteristics of different types of optimization techniques with the appropriate tools to be used in type problem.                                                             | 2 | 3 | - |
| 1 /2 | OMEC          | 1 Operations Research         | CO2  | Examine the concept of optimization techniques to build and solve different types of industrial problems, by using appropriate techniques.                                                    | 2 | - | 1 |
|      | 8ME6-<br>60.1 |                               | CO3  | Investigate the sensitivity of a solution for different variables and propose recommendations in language understandable to the decision-makers in realistic problem.                         | 2 | - | 2 |
|      |               |                               | CO4  | Evaluate the solution based on realistic situation including existing standards and propose the suitable solution with justification.                                                         | 2 | 2 | - |
|      |               |                               | CO 1 | Understanding of basic concepts and Principles of EM wave, propagation reflection and transmission. [Understanding].                                                                          | ı | 1 | 2 |
| 74   | 8EC6.60.1     |                               | CO 2 | Apply the knowledge for interest in complex dielectric constant, dipolar loss mechanism and design mechanism to understand the effect of rate rise of temperature. [Applying & Understanding] | 1 | 1 | 2 |
|      |               |                               | CO 3 | Analyze the structure of RF heating in industrial application. [Analyzing]                                                                                                                    | 1 | - | 2 |
|      |               |                               | CO 4 | Design of Hazards and safety standards in various engineering problem. [Create & Design].                                                                                                     | 1 | - | 2 |
| 75   | 8EC6.60.2     | EC6.60.2 Robotics and Control | CO 1 | Understand the fundamentals of robotics and its components, methods of linear motion into rotary motion and vice-verse. [Understanding].                                                      | - | 1 | 2 |
| 13   | 0L00.00.2     |                               | CO 2 | Apply the appropriate techniques for movement of robotic joints with computers/microcontrollers. [Applying & Understanding].                                                                  | - | 1 | 2 |

|    |         |                                                   | CO 3 | Analyze parameters required to be controlled in a robot for specific application. [Analyzing].                                                | 2                                                                           | - | 2 |   |
|----|---------|---------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---|---|---|
|    |         |                                                   | CO 4 | Design and develop small automatic / autotronics applications with the help of Robotics for solving the real-life problems [Create & Design]. | -                                                                           | 1 | 2 |   |
|    |         | Project Planning & Construction<br>Management Lab | CO 1 | Understand the capital budgeting,<br>Contracts, Tenders and related<br>terms, Arbitration, PERT and CPM,<br>PPP model.                        | 2                                                                           | 2 | - |   |
| 76 | 8CE3-21 |                                                   | CO 2 | Analysis the capital budgeting,<br>Estimation of various items, Network<br>analysis, Project based on PPP<br>model.                           | 1                                                                           | 1 | 2 |   |
|    |         |                                                   | CO 3 | Prepare the bar chart diagram,<br>Project Progress Network muster<br>roll, measurement book, tender<br>documents, Tender Notice.              | 1                                                                           | 1 | 1 |   |
|    |         |                                                   | CO 4 | Develop the understanding about dispute settlement.                                                                                           | 2                                                                           | 2 | - |   |
|    | 8CE3-22 |                                                   |      | CO 1                                                                                                                                          | Design of bituminous mixes, DLC and PQC as per relevant IS Code provisions. | 2 | 1 | - |
| 77 |         | 3-22 Pavement Design                              | CO 2 | Understand basics parameters and concepts of pavement design.                                                                                 | 2                                                                           | 1 | - |   |
|    |         |                                                   | CO 3 | Design of flexible pavement by various methods.                                                                                               | 2                                                                           | 1 | 1 |   |
|    |         |                                                   | CO 4 | Understand the specifications of low-cost roads/rural roads.                                                                                  | 2                                                                           | 1 | 2 |   |
|    |         |                                                   | CO 1 | Discover potential research areas and conduct a survey of several available literatures in the preferred field of study.                      | 1                                                                           | - | 2 |   |
|    |         |                                                   | CO 2 | Compare and contrast the several existing solutions for research challenge.                                                                   | 1                                                                           | - | 2 |   |
| 78 | 8CE7-50 | Project                                           | CO 3 | Demonstrate an ability to work in teams and manage the conduct of the research study.                                                         | 1                                                                           | - | 2 |   |
|    |         |                                                   | CO 4 | Formulate and propose a plan for creating a solution for the research plan identified.                                                        | 1                                                                           | - | 2 |   |
|    |         |                                                   | CO 5 | Report and present the findings of the study conducted in the preferred domain.                                                               | 1                                                                           | - | 2 |   |

### **Bachelor of Technology Electronics and Communication Engineering**

**Program Name: Electronics and Communication Engineering** 

Subject/Code No: Computer Architecture, 5EC3-01 LTP: 2+0+0 Semester: V
Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                                                                           | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Understand the principles of computer organization along with fundamental concepts pertaining to processor architecture, memory arrangement, and input-output mechanisms.                                                                               | 1        | 3        | 2        |
| CO2       | Examine the fundamental framework of a digital computer, including methods for adding and multiplying integers and floating-point figures using two's complement and IEEE floating-point notation. Delve into the organization of input-output systems. | 1        | 3        | 2        |
| CO3       | Critically assess arithmetic operations on both fixed and floating-point numbers within a computer, employing diverse algorithms such as the restoring method, microprogrammed control units, and DMA controllers.                                      | 1        | 3        | 2        |
| CO4       | Formulate designs for elementary and intermediate RISC pipelines, encompassing considerations like the instruction set, functional units, and integral components of computers.                                                                         | 1        | 3        | 2        |

### Subject/Code No: Electromagnetics Waves, 5EC3-02 LTP: 3+0+0 Semester: V Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                         | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Introduce the idea of the number system, Boolean Algebra, combinational and sequential circuits, semiconductor memories, and the flow of VLSI design. | 2        | 3        | 2        |
| CO2       | Utilize suitable technology to enhance circuit performance, leading to smoother and faster operations, thereby conserving time and energy.            | 3        | 2        | 1        |
| CO3       | Examine the creation process and compromises within different digital electronic categories, aiming to achieve lower power usage and smaller sizes.   | 3        | 3        | 2        |
| CO4       | Evaluate both synchronous and asynchronous sequential circuits, and cultivate the skill to design such circuits using VHDL.                           | 3        | 2        | 1        |

### Subject/Code No: Control System, 5EC3-03 LTP: 3+0+0 Semester: V Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                                                                                                  | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Explain the fundamental notion of control systems encompassing both feedback and open-loop configurations. Explore time and frequency-based evaluations of system responses. Delve into state-variable examination, optimal control strategies, and nonlinear control systems. | 3        | 1        | 2        |
| CO2       | Resolve intricacies related to feedback control systems, time-based responses, frequency-based reactions, and state-variable analyses. Employ tools like Routh-stability criterion, root locus, polar plot, bode plot, Nyquist plots, and state models to ascertain stability. | 3        | 1        | 2        |
| CO3       | Assess the performance of diverse control systems by assessing their behavior in time-domain, frequency-domain, and through state-space analysis techniques.                                                                                                                   | 3        | 1        | 2        |
| CO4       | Formulate suitable compensatory mechanisms for typical control scenarios using both time and frequency response approaches.                                                                                                                                                    | 3        | 1        | 2        |

### Subject/Code No: Digital Signal Processing, 5EC3-04 LTP: 3+0+0 Semester: V Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                    | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Elucidate the notion of sampling and its subsequent reconstruction. [Recall]                                                                                                                     | 2        | 3        | 2        |
| CO2       | Elaborate on the Z-Transform, DFT, and FFT algorithms. [Comprehension]                                                                                                                           | 2        | 3        | 2        |
| CO3       | Utilize the Z-Transform, DFT, and FFT algorithms to scrutinize Linear Shift-Invariant (LSI) systems. [Application and Analysis]                                                                  | 2        | 3        | 2        |
| CO4       | Formulate Infinite Impulse Response (IIR) and Finite Impulse Response (FIR) filters employing distinct techniques tailored for diverse Digital Signal Processing (D.S.P.) applications. [Design] | 2        | 3        | 2        |

# Subject/Code No: Microwave Theory & Techniques, 5EC3-05 LTP: 3+0+0 Semester: V Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                                               | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Introduction to the fundamental ideas and tenets of microwave engineering.                                                                                                                                                  | 2        | 1        | 2        |
| CO2       | Acquire insights into the functioning of electromagnetic waves and the construction of both active and passive microwave networks. Additionally, identify the distinct microwave parameters employed within these networks. | 2        | 1        | 2        |
| CO3       | Examine the effectiveness of an impedance tuning network aimed at optimizing the transmission for satellite and RADAR communication.                                                                                        | 2        | 1        | 2        |
| CO4       | Incorporate active and passive microwave components to construct a representative communication system, enabling an assessment of its impact on the human body.                                                             | 2        | 1        | 2        |

### Subject/Code No: Satellite Communication, 5EC5-13 LTP: 2+0+0 Semester: V Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                        | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Introduction to the structure of satellite systems as a mechanism for achieving rapid, extended-range communication.                                                 | 3        | 1        | 1        |
| CO2       | Elaborate on diverse facets linked to satellite systems, including orbital equations, satellite subsystems, link budgeting, modulation, and multiple access methods. | 3        | 1        | 1        |
| CO3       | Examine the array of access strategies employed in satellite communication.                                                                                          | 3        | 1        | 1        |
| CO4       | Solve numerical scenarios concerning orbital motion and the formulation of a link budget based on specified parameters and conditions.                               | 3        | 1        | 1        |

## Subject/Code No: RF Simulation Lab, 5EC3-21 LTP: 0+0+3 Semester: V Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                             | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Elaborate upon fundamental microwave network theory and the application of scattering matrices.                                           | 3        | 1        | 1        |
| CO2       | Utilizing microwave energy for targeted heating of specific regions or objects enhances the performance of electronic devices.            | 3        | 1        | 1        |
| CO3       | Exhibit a comprehensive understanding of essential radio frequency (RF) concepts, RF amplification, and RF filtering.                     | 3        | 1        | 1        |
| CO4       | Devise RF amplifier configurations employing microwave bipolar junction transistors (BJTs) and microwave field-effect transistors (FETs). | 3        | 1        | 1        |
| CO5       | Create and manufacture microwave components or devices utilizing micro strip technology.                                                  | 3        | 1        | 1        |

## Subject/Code No: Digital Signal Processing Lab, 5EC3-22 LTP: 0+0+3 Semester: V Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                     | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Categorize signals and employ diverse signal manipulations.                                                                       | 3        | 1        | 1        |
| CO2       | Investigate assorted attributes of digital systems.                                                                               | 3        | 1        | 1        |
| CO3       | Construct Simulink models and graphical user interfaces (GUIs) for both analog and digital modulation methods.                    | 3        | 1        | 1        |
| CO4       | Formulate a variety of Digital Signal Processing (DSP) algorithms using the MATLAB software package for distinct transformations. | 3        | 1        | 1        |
| CO5       | Formulate, examine, and execute Analog & Digital filters through MATLAB programming.                                              | 3        | 1        | 1        |

### Subject/Code No: Microwave Lab, 5EC3-23 LTP: 0+0+3 Semester: V Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                  | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Elaborate upon the fundamental idea behind microwave component mechanisms utilized in wired communication systems.             | 3        | 1        | 1        |
| CO2       | Construct linear and non-linear data structures through the utilization of linked lists.                                       | 3        | 2        | 1        |
| CO3       | Investigate the characteristics of distinct microwave parameters, considering their intrinsic traits.                          | 3        | 2        | 1        |
| CO4       | Formulate an assessment of and design real-time application-oriented microwave waveguides intended for communication purposes. | 3        | 2        | 1        |

Subject/Code No: Industrial Training, 5EC7-30 LTP: 0+0+1 Semester: V
Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Engage in industrial projects as part of the industrial training experience.                                  | 1        | 2        | 3        |
| CO2       | Collaborate with professionals in the industry and adhere to established engineering protocols and standards. | 1        | 2        | 3        |
| CO3       | Cultivate understanding of typical workplace conduct and enhance interpersonal and teamwork proficiencies.    | 1        | 2        | 3        |
| CO4       | Generate proficient work reports and deliver well-structured presentations.                                   | 1        | 2        | 3        |

Subject/Code No: Power Electronics, 6EC3-01 LTP: 2+0+0 Semester: VI Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                       | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Elaborate on the fundamental functioning and contrast the efficiency of different Power Semiconductor Devices, passive components, and switching circuits.                                          | 3        | 1        | 1        |
| CO2       | Elucidate the operation of step-up and step-down choppers, power supplies, and Buck-Boost converters through an understanding of the fundamental operational traits of power semiconductor devices. | 3        | 1        | 1        |
| CO3       | Formulate typical alternative approaches and choose appropriate power converters for the regulation of electric motors and other industrial-grade equipment.                                        | 3        | 1        | 1        |
| CO4       | Design and assess Controlled Converters for both single-phase and three-phase systems, as well as Voltage and Current Source Inverters.                                                             | 3        | 1        | 1        |

Subject/Code No: Computer Network, 6EC3-02 LTP: 3+0+0 Semester: VI Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                                                                    | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Capable of acquiring and dissecting the principles behind layered protocol architecture; skillful in recognizing and detailing the system functions within the accurate protocol strata, while also explaining the interplay between these layer | 2        | 2        | 2        |
| CO2       | Resolve mathematical quandaries to grasp data-link and network protocols more comprehensively.                                                                                                                                                   | 2        | 2        | 2        |
| CO3       | Utilize network layer protocols and compute the requisite count of subnets for a given network.                                                                                                                                                  | 2        | 2        | 2        |
| CO4       | Analyze the dependability of data transmission over the transport layer in the context of bit errors within a lossy channel scenario.                                                                                                            | 2        | 2        | 2        |

### Subject/Code No: Fiber Optics Communications, 6EC3-03 LTP: 3+0+0 Semester: VI Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                                                                                                      | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Understanding the fundamental ideas and fundamental principles of Fiber Optics Communication.                                                                                                                                                                                      | 3        | 1        | 1        |
| CO2       | Acquiring insight into the functioning of fiber optic communication and applying this understanding to construct an optical measurement setup. This arrangement will enable the measurement of various crucial factors, including numerical aperture, dispersion, and attenuation. | 3        | 1        | 1        |
| CO3       | Evaluating the composition of diverse categories of optical transmitters and receivers for the purpose of setting up optical connections.                                                                                                                                          | 3        | 1        | 1        |
| CO4       | Devising systems for WDM and DWDM, and additionally assessing the efficacy of active and passive optical components.                                                                                                                                                               | 3        | 1        | 1        |

Subject/Code No: Antennas and Propagation, 6EC3-04 LTP: 3+0+0 Semester: VI Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                               | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Elaborate on the fundamental notion of antennas and their practical uses.                                                                   | 3        | 1        | 1        |
| CO2       | Determine an antenna's radiation pattern to deduce both its physical configuration and the wavelength of the emitted electromagnetic waves. | 3        | 1        | 1        |
| CO3       | Assess the radiation patterns exhibited by different types of antennas.                                                                     | 3        | 1        | 1        |
| CO4       | Devise a Smart Antenna system tailored for real-time applications.                                                                          | 3        | 1        | 1        |

Subject/Code No: Information Theory and Coding, 6EC3-05 LTP: 3+0+0 Semester: VI Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                            | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Elaborate on the basics of information theory, including concepts like uncertainty, information, entropy, channel capacity, and the necessity of coding. | 3        | 3        | 2        |
| CO2       | Employ coding methods for both sources and channels, such as Huffman, Lempel-Ziv, and Block codes.                                                       | 3        | 3        | 2        |
| CO3       | Assess diverse coding and decoding strategies for multiple applications like compression and data transmission.                                          | 3        | 3        | 2        |
| CO4       | Formulate streamlined codes for error detection and correction techniques.                                                                               | 3        | 3        | 2        |

Subject/Code No: Introduction to MEMS (Professional Elective-II), 6EC5-11 LTP: 3+0+
Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                                               | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Grasp the underlying concepts encompassing the basic principles, configuration, production, characteristics, and methodology behind MEMS/NEMS, encompassing Micro devices, Micro systems, and Micromachining methodologies. | 3        | 2        | 1        |
| CO2       | Utilize MEMS technology to craft minute, accurate entities.                                                                                                                                                                 | 3        | 2        | 1        |
| CO3       | Investigate the impact of scaling on Micro/Nano Sensors within distinct applications.                                                                                                                                       | 3        | 3        | 2        |
| CO4       | Formulate and execute the blueprint and construction of Micro/Nano devices, along with Micro/Nano systems, to address tangible real-world predicaments.                                                                     | 3        | 2        | 1        |

### Subject/Code No: Nano Electronics (Professional Elective-II), 6EC5-12 LTP: 3+0+0 Semester: VI Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                                                        | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Explain and understand the Schrodinger equation, CMOS Scaling, the nano scale MOSFET, Finfets, Vertical MOSFETs, Resonant Tunneling Diode, Coulomb dots, Quantum blockade, Single electron transistors, Carbon nanotube electronics. | 3        | 1        | 2        |
| CO2       | Use different methods to get energy, wave function, propagation constant, and channel length in MOSFETs and CMOS.                                                                                                                    | 3        | 1        | 2        |
| CO3       | Analyze and identify the changes in the parameters like inter-atomic distance, 2D and 3D structure, Scaling of CMOS.                                                                                                                 | 3        | 1        | 2        |
| CO4       | Synthesis the structure of CMOS, Finfet, Vertical MOSFET and Carbon nano tubes.                                                                                                                                                      | 3        | 1        | 1        |

### Subject/Code No: Computer Network Lab, 6EC3-21 LTP: 0+0+3 Semester: VI Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                             | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Understand the principles of TCP/IP protocols, layered architecture, as well as LAN, MAN, and WAN setups. | 3        | 3        | 2        |
| CO2       | Apply data structures in networking, incorporating weighted and unweighted graphs.                        | 3        | 3        | 2        |
| CO3       | Elaborate on the simulation of Queuing Theory.                                                            | 3        | 1        | 1        |
| CO4       | Create a LAN Training Kit employing CSMA/CD/CA principles.                                                | 3        | 3        | 2        |

### Subject/Code No: Antenna and Wave Propagation Lab, 6EC3-22 LTP: 0+0+2 Semester: VI Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                       | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Grasp the fundamental idea behind antenna radiation mechanisms employed in wireless communication.                                                                                                  | 3        | 1        | 1        |
| CO2       | Employ various communication modes tailored to specific applications such as mobile and satellite contexts.                                                                                         | 3        | 1        | 1        |
| CO3       | Examine and detect issues within MOS and CMOS devices (such as assessing gate delay, transistor dimensions, power usage, as well as performance under extreme pressure and temperature conditions). | 3        | 1        | 1        |
| CO4       | Investigate the characteristics of diverse antenna types with regards to their inherent parameters.                                                                                                 | 3        | 1        | 1        |

## Subject/Code No: Electronics Design Lab, 6EC3-23 LTP: 0+0+3 Semester: VI Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                             | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Grasp the fundamental principles and practical uses of Op-amp IC (731), 555 timer IC, Cathode Ray Oscilloscope (CRO), breadboard, and function generator. | 3        | 1        | 1        |
| CO2       | Utilize distinct design approaches on a breadboard employing IC-731 and IC-555 for various functionalities.                                               | 3        | 1        | 1        |
| CO3       | Examine the performance of diverse circuit configurations involving IC-731 and IC-555 across a spectrum of applications and inputs.                       | 3        | 1        | 1        |
| CO4       | Formulate circuit diagrams on a breadboard utilizing IC-731 and IC-555 to cater to distinct application requirements.                                     | 3        | 1        | 1        |

### Subject/Code No: Power Electronics Lab, 6EC3-24 LTP: 0+0+2 Semester: VI Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Comprehend AC voltage regulation through TRIAC, antiparallel thyristors, TRIAC and DIAC, in addition to generating pulses using the DSP/FPGA platform.        | 3        | 1        | 1        |
| CO2       | Comprehend AC voltage regulation through TRIAC, antiparallel thyristors, TRIAC and DIAC, in addition to generating pulses using the DSP/FPGA platform.        | 3        | 1        | 1        |
| CO3       | Explore single-phase bridge converters, single-phase cycloconverters, and single-phase dual converters, alongside direct current (DC) motor speed management. | 3        | 1        | 1        |
| CO4       | Execute experiments encompassing single-phase PWM inverters, buck, boost, and buckboost regulators.                                                           | 3        | 1        | 1        |

#### Subject/Code No: VLSI Design, 7EC5-11 LTP: 3+0+0 Semester: VII Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                                                                                                                                                  | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Comprehend and elucidate diverse digital components, such as MOSFET, NMOS inverter, PMOS inverter, CMOS, CMOS inverter, logic gates, Clocked CMOS (C2MOS) logic, DOMINO logic, NORA logic, NP(ZIPPER) logic, and PE (pre-charge and evaluation) logic. Gain insight into fundamental memory circuits, including SRAM and DRAM. | 3        | 3        | 2        |
| CO2       | Employ various technical approaches to acquire MOSFET parameters, encompassing channel length modulation, higher-order effects, model parameters, drain-source current relationship, and body effect.                                                                                                                          | 3        | 1        | 1        |
| CO3       | Apply techniques to extract parameters from CMOS devices, like inverter parameters, pullup and pull-down ratios, and noise margins.                                                                                                                                                                                            | 3        | 1        | 1        |
| CO4       | Generate VHDL code for both combinational and sequential components. Devise layouts and stick diagrams for MOSFET, CMOS inverters, as well as any Boolean expressions, and explore distinct fabrication methods for NMOS and CMOS technologies.                                                                                | 3        | 3        | 1        |

#### Subject/Code No: CMOS Design, 7EC5-13 LTP: 3+0+0 Semester: VII Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Elaborate on the manufacturing procedure and characteristics of MOS devices. | 3        | 1        | 1        |
| CO2       | Grasp the necessity of hardware description language and its attributes.     | 3        | 1        | 1        |
| CO3       | Investigate the influence of scaling on MOS circuits.                        | 3        | 1        | 1        |
| CO4       | Formulate both combinational and sequential circuits utilizing VHDL.         | 3        | 2        | 1        |

#### Subject/Code No: VLSI Design Lab, 7EC3-21 LTP: 0+0+3 Semester: VII Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                     | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Grasp the steps involved in the physical design workflow of Digital Integrated Circuits.                                          | 3        | 3        | 1        |
| CO2       | Outline the method for creating programmable circuits.                                                                            | 3        | 3        | 1        |
| CO3       | Outline the method for creating programmable circuits.                                                                            | 3        | 3        | 1        |
| CO4       | Display proficiency in utilizing diverse Electronic Design Automation (EDA) tools for designing digital systems.                  | 3        | 3        | 1        |
| CO5       | Execute the schematic and layout design for different digital CMOS logic circuits using Electronic Design Automation (EDA) tools. | 3        | 1        | 1        |

#### Subject/Code No: Advance Communication Lab (MATLAB Simulation), 7EC3-22 LTP: 0+0+2 Semester: VII Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Devise and exhibit digital modulation methods.                                                                                                | 3        | 3        | 1        |
| CO2       | Illustrate and gauge wave propagation in microstrip antennas.                                                                                 | 3        | 3        | 1        |
| CO3       | Examine the attributes of microstrip components and assess parameter measurements.                                                            | 3        | 3        | 1        |
| CO4       | Construct a model for an optical communication system and analyze its traits.                                                                 | 3        | 3        | 1        |
| CO5       | Execute simulations for digital communication principles, calculating and presenting diverse parameters along with graphical representations. | 3        | 3        | 1        |

### Subject/Code No: Optical Communication Lab, 7EC3-23 LTP: 0+0+2 Semester: VII Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                             | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Elaborate on the principles governing optical sources and methods for power launching and coupling.                                                       | 3        | 3        | 1        |
| CO2       | Contrast the attributes of fiber optic receivers.                                                                                                         | 3        | 3        | 1        |
| CO3       | Devise a fiber optic connection considering resource constraints.                                                                                         | 3        | 3        | 1        |
| CO4       | Display comprehension of optical fiber communication links, encompassing the architecture, signal propagation, and transmission traits of optical fibers. | 3        | 3        | 1        |

### Subject/Code No: Industrial Training, 7EC7-30 LTP: 1+0+0 Semester: VII Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                        | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|----------------------------------------------------------------------|----------|----------|----------|
| CO1       | Observe and comprehend industrial processes.                         | 1        | 3        | 3        |
| CO2       | Exhibit diverse industrial machinery.                                | 2        | 2        | 3        |
| CO3       | Cultivate proficiency in report writing.                             | 1        | 2        | 3        |
| CO4       | Boost communication skills and self-assurance through presentations. | 1        | 2        | 3        |

#### Subject/Code No: Seminar, 7EC7-40 LTP: 2+0+0 Semester: VII Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Recognize a real-time industrial or societal issue within the field of engineering to choose a seminar topic. | 1        | 1        | 3        |
| CO2       | Explore different documented solutions to engineering challenges across various societal contexts.            | 1        | 1        | 3        |
| CO3       | Assess and evaluate the outcomes of the research conducted in the chosen domain.                              | 1        | 1        | 3        |
| CO4       | Compile a proficient document incorporating personal insights and conclusions.                                | 1        | 1        | 3        |
| CO5       | Elevate communication process and self-assurance through the process of presenting the findings.              | 1        | 1        | 3        |

### Subject/Code No: Electrical Machines and Drive, 7EE6-60.1 LTP: 3+0+0 Semester: VII Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|--------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Comprehend the structural intricacies and operational principles of rotating electrical devices.             | 2        | 1        | 1        |
| CO2       | Attain understanding regarding the operational principles and diverse facets of electric propulsion systems. | 2        | 1        | 1        |
| CO3       | Evaluate different methods of controlling speed in various electric propulsion systems.                      | 2        | 1        | 1        |
| CO4       | Cultivate expertise in designing speed and current control circuits for an electric propulsion system.       | 2        | 1        | 1        |

## Subject/Code No: Power Generation Sources, 7EE6-60.2 LTP: 3+0+0 Semester: VII Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                       | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------|----------|----------|----------|
| CO1       | Categorize and explain different types of renewable energy options. | 2        | 1        | 1        |
| CO2       | Anticipate potential sources of renewable energy.                   | 2        | 1        | 1        |
| CO3       | Provide visual representations of renewable energy alternatives.    | 2        | 1        | 1        |
| CO4       | Restructure the array of energy sources.                            | 2        | 1        | 1        |
| CO5       | Arrange renewable energy sources based on societal requirements.    | 2        | 1        | 1        |

### Subject/Code No: Environmental Impact Analysis, 7CE6-60.1 LTP: 3+0+0 Semester: VII Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Explain the meanings of the terms utilized in Environmental Impact Assessment (EIA) and establish criteria for quality benchmarks pertaining to various elements of the environment.          | 1        | 1        | 1        |
| CO2       | Comprehend the fundamental notions concerning EIA, such as ecological disruption, consequences of contamination, and the significance of involving stakeholders throughout the EIA procedure. | 1        | 1        | 1        |
| CO3       | Construct a structured framework for conducting an environmental impact assessment concerning a project or undertaking under consideration.                                                   | 1        | 1        | 1        |
| CO4       | Evaluate diverse approaches and the ramifications associated with Environmental Impact Assessment (EIA), encompassing a range of methodologies and their respective impacts.                  | 1        | 1        | 1        |
| CO5       | Develop proficiency in deploying different searching and sorting methods, and make informed decisions regarding their selection based on specific requirements.                               | 1        | 1        | 1        |

# Subject/Code No: Disaster Management, 7CE6-60.2 LTP: 3+0+0 Semester: VII Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                                           | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Comprehend the notion of disasters, risks, hazards, capacity enhancement, dealing with catastrophes, and the regulations outlined in the disaster management act and policy within the context of India.                | 1        | 1        | 1        |
| CO2       | Elaborate on the idea of disasters, risks, and hazards, as well as the process of capacity development, strategies for managing crises, and the legal framework provided by India's disaster management act and policy. | 1        | 1        | 1        |
| CO3       | Categorize different types of disasters, associated risks, and potential hazards, while also exploring various methodologies for effectively managing these situations.                                                 | 1        | 1        | 1        |
| CO4       | Apply the principles of capacity building, disaster coping mechanisms, and the implementation of India's disaster management act and policy to practical scenarios.                                                     | 1        | 1        | 1        |

# Subject/Code No: Quality Management/ISO 9000, 7CS6-60.1 LTP: 3+0+0 Semester: VII Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                            | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|----------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Understand the significance of quality control and how individuals can impact the level of quality.      | 1        | 1        | 1        |
| CO2       | Examine the constituents comprising a quality management framework and the function it serves.           | 1        | 1        | 1        |
| CO3       | Implement quality control methodologies to enhance computer-based systems.                               | 1        | 1        | 1        |
| CO4       | Devise diverse elements of a quality system to preempt failures and the need for subsequent corrections. | 1        | 1        | 1        |

### Subject/Code No: Artificial Intelligence and Expert Systems, 8EC5-11 LTP: 3+0+0 Semester: VIII Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                        | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Understand the fundamentals of artificial intelligence (AI) and expert systems.                                                                      | 1        | 1        | 1        |
| CO2       | Utilize fundamental Al principles in solving problems, making inferences, perceiving information, representing knowledge, and facilitating learning. | 1        | 1        | 1        |
| CO3       | Display competence in employing the scientific method for machine learning models.                                                                   | 1        | 1        | 1        |
| CO4       | Delve into the fundamentals of Artificial Neural Networks (ANN) and various optimization techniques.                                                 | 1        | 1        | 1        |

#### Subject/Code No: Digital Image and Video Processing, 8EC5-12 LTP: 3+0+0 Semester: VIII Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                               | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Comprehend the process of image creation and the significance of various color models.                                      | 1        | 1        | 1        |
| CO2       | Calculate the impact of changes in intensity on an image and implement filtering in both the spatial and frequency domains. | 1        | 1        | 1        |
| CO3       | Explain methods for improving the quality of images and restoring those that are damaged in a deteriorated setting.         | 1        | 1        | 1        |
| CO4       | Evaluate the influence and necessity of morphological operations on an image, along with their practical uses.              | 1        | 1        | 1        |

# Subject/Code No: Simulation Modeling and Analysis, 8ME6-60.2 LTP: 3+0+0 Semester: VIII Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                       | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Provide a definition of simulation modeling and explore its application in real-life organizational scenarios.                      | 1        | 2        | 1        |
| CO2       | Explore the utilization of random numbers and random variates methodology across various practical contexts.                        | 1        | 2        | 1        |
| CO3       | Scrutinize the responsiveness of simulation-generated solutions when dealing with authentic challenges.                             | 1        | 2        | 1        |
| CO4       | Elaborate on the interpretation of simulation models and their application in resolving crucial concerns within practical problems. | 1        | 2        | 1        |

#### **Bachelor of Technology Electrical Engineering**

**Program Name: Electrical Engineering** 

Subject/Code No: Electrical/5EE3-01 Semester: 3th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                                                                                                                        | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Learn about the concepts of Bonding and types of solids, Crystalline state and their defects, Classical theory of electrical and thermal conduction in solids, temperature dependence of resistivity, skin effect, Hall effect.                                                                      | 3        |          |          |
| CO2       | Acquire knowledge of Dielectric Properties of Insulators in Static and Alternating field, Properties of Ferro-Electric materials, Polarization, Piezoelectricity, Frequency dependence of Electronic and Ionic Polarizability, Complex dielectric constant of non-dipolar solids, dielectric losses. | 3        |          |          |
| CO3       | Apply concepts of Magnetization of matter, Magnetic Material Classification, Ferromagnetic Origin, Curie-Weiss Law, Soft and Hard Magnetic Materials, Superconductivity and its origin, Zero resistance and Meissner Effect, critical current density.                                               | 3        | 2        |          |
| CO4       | Acquire knowledge of Conductivity of metals Ohm's law and relaxation time of electrons, collision time and mean free path, electron scattering and resistivity of metals.                                                                                                                            | 3        |          |          |

### Subject/Code No: POWER SYSTEM-I/5EE3-02 Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                        | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Understand the overall framework of the power system while taking various faults and their mitigation measures into account.         | 3        | 2        | 2        |
| CO2       | Illustrate various electrical characteristics of transmission lines in transient, sub-transient, and steady state stability modes.   | 3        | 2        | 1        |
| CO3       | Interpret the integration of distributed generation with grid while taking into account the protection system in real-time projects. | 3        | 2        |          |
| CO4       | Estimate the electrical machines parameters & insulation requirements under different stability modes.                               | 3        | 1        | 2        |

Subject/Code No: Control System/5EE3-03 Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Utilize the core principles of both linear and nonlinear control systems to mathematically express their characteristics.                     | 3        | 3        | 1        |
| CO2       | Compare and contrast the temporal and spectral reactions of systems that are Linear Time Invariant, examining their behaviors and properties. | 3        |          |          |
| CO3       | Evaluate the state space parameters within conventional control systems, considering their significance and impact.                           | 3        | 3        | 1        |
| CO4       | Utilize the core principles of both linear and nonlinear control systems to mathematically express their characteristics.                     | 3        | 3        | 1        |

### Subject/Code No: Microprocessor/ 5EE3-04 Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                    | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Elaborate the fundamental concepts of 8051 architecture, programming instructions, and 8051 interfacing schemes. | 3        | 3        | 3        |
| CO2       | Indicate the programming knowledge for external devices interfacing and serial communication                     | 3        | 3        |          |
| CO3       | Understand the memory expansion and interfacing of peripheral device such as ADC, DAC, timers, counters, etc.    | 3        | 3        | 1        |
| CO4       | Develop 8051 programs for controlling external/interfacing devices for solving a particular task/problem.        | 3        | 3        | 1        |
| CO5       | Elaborate the fundamental concepts of 8051 architecture, programming instructions, and 8051 interfacing schemes. | 3        | 3        |          |

# Subject/Code No: Electrical Machine Design/5EE3-05 Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Interpret the characteristics of engineering materials used for electrical machine designing. | 3        | 3        |          |
| CO2       | Infer the performance characteristics of electrical Machines with the specified constraints.  | 3        | 3        | 1        |
| CO3       | Relate electrical machine models in computer aided design software.                           | 3        | 3        |          |
| CO4       | Interpret the design of windings & core of electrical machines.                               | 3        | 3        |          |

### Subject/Code No: Restructured Power System/5EE5-11 Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                              | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Categorize electricity market models, congestion management methods, ancillary services, and transmission pricing.                                         | 3        | 2        |          |
| CO2       | Compare methods of congestion management, market models & pricing schemes to identify the best options.                                                    | 3        | 3        |          |
| CO3       | Prepare theoretically a restructured model of existing power system by taking into account network congestion, best pricing model, and ancillary services. | 3        | 3        |          |
| CO4       | Acquire knowledge about different supplementary services and the markets associated with these services on both the national and international levels.     | 3        | 3        |          |

### Subject/Code No: Power Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                           | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Illustrate the basic layouts of hydro, thermal, nuclear and gas power plants.           | 3        | 3        | 1        |
| CO2       | Distinguish the parameters of the feeders, distributors, and EHV transmission lines.    | 3        | 3        |          |
| CO3       | Evaluate the dielectric strength of transformer oil, insulating materials & insulators. | 3        | 3        |          |
| CO4       | Create a probability tool to forecast load for short-, medium-, and long-term planning. | 3        | 3        | 2        |

### Subject/Code No: Control System Lab/5EE3-22 Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Analyze the output response of a given system for different test signals.    | 3        | 2        |          |
| CO2       | Design the 1st order and 2nd order circuits for transient response analysis. | 3        | 2        |          |
| CO3       | Identify the frequency response of various compensating networks.            | 3        | 2        |          |
| CO4       | Investigate the various approaches for controller parameter tuning.          | 3        |          |          |
| CO5       | Device the stability of control system using Bode plots                      | 3        | 2        |          |

### Subject/Code No: Microprocessor Lab/5EE3-23 Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Demonstrate the functions, operations, memory structure and hardware units of 8085 microprocessor kit.                        | 3        | 3        | 3        |
| CO2       | Evaluate different waveforms using 8253 / 8253 programmable timer.                                                            | 3        | 3        |          |
| CO3       | Build and demonstrate assembly level programs for transferring data to specified output ports in serial and parallel fashion. | 3        | 3        | 1        |
| CO4       | Fabricate 8-bit LED/LCD interface to 8085 microprocessor kit using 8155 and 8255.                                             | 3        | 3        | 1        |
| CO5       | Develop programs to perform addition, subtraction, division, block transfer, searching, sorting, etc using assembly language. | 3        | 3        |          |

# Subject/Code No: System Programming Lab/5EE3-24 Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                     | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Simulate the basic of MATLAB features and syntaxes in mathematical Programming.                                   | 3        | 3        |          |
| CO2       | Solve various basic electrical and electronic problems in MATLAB environment                                      | 3        | 3        | 1        |
| CO3       | Execute the single-phase induction machine Torque- speed characteristics and transformer test in MATLAB Simulink. | 3        | 3        |          |
| CO4       | Design Single Phase Full Wave Diode Bridge Rectifier with LC Filter in MATLAB Simulink.                           | 3        | 3        | 1        |
| CO5       | Evaluate the importance of MATLAB in research by simulation work                                                  | 3        | 3        |          |

### Subject/Code No: Industrial Training/5EE7-30 Semester: 5th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                             | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Recognize industrial methodologies and fields in collaboration with industry experts                      | 3        | 3        |          |
| CO2       | Investigate sophisticated tools and methods employed in industrial processing.                            | 3        | 3        |          |
| CO3       | Enhance understanding of overall workplace etiquette and foster interpersonal and teamwork proficiencies. | 3        | 3        | 3        |
| CO4       | Construct adept presentations and professional work documents                                             | 3        | 3        | 1        |
| CO5       | Build the professional presentations and work reports.                                                    | 2        | 2        | 3        |

### Subject/Code No: Computer Architecture/6EE3-01 Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                            | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Explain the structure, memory hierarchy, and input-output arrangement of computers, incorporating details about a 16-bit and 32-bit microprocessor.                                                      | 3        | 3        |          |
| CO2       | Explore the various addressing modes, programming models, instruction-level pipelining, and the role of memory management units.                                                                         | 3        | 3        |          |
| CO3       | Evaluate the effectiveness of a multi-bus organization, the significance of interrupts and interrupt controllers, the utilization of real mode addressing, and the implementation of dynamic scheduling. | 3        | 3        | 1        |
| CO4       | Discuss the interplay between data types, microinstructions, memory classifications, interface circuits, and instruction sets in the context of computer system design.                                  | 3        | 3        | 2        |

# Subject/Code No: Power System - II/6EE3-02 Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                           | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Manipulate the power flow equations to analyze the voltage and frequency issues of system.                                              | 3        | 2        |          |
| CO2       | Examine the system stability and contingency by observing the system voltage and frequency.                                             | 3        | 2        | 2        |
| CO3       | Interpret the power and demand side management in the prospect of optimum utilization of electrical energy by dynamic pricing strategy. | 3        | 2        | 1        |
| CO4       | Summarize different case studies on power system to assess system security.                                                             | 3        | 2        | 1        |

### Subject/Code No: Power System Protection/6EE3-03 Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                       | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Understand the fundamentals of fault analysis, power system protection and the components involved in power system protection.      | 3        | 3        |          |
| CO2       | Describe the concepts of under-frequency, under-voltage and df/dt relays, wide area measurement system and over current protection. | 3        | 3        | 1        |
| CO3       | Summarize the protection schemes for power system components.                                                                       | 3        | 3        |          |
| CO4       | Understand the implementation of the digital protection scheme with the help of signal processing techniques.                       | 3        | 3        | 1        |

## Subject/Code No: Electrical Energy Conversion and Auditing/6EE3-04 Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                             | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Illustrate the energy landscape, energy approach, regulations pertaining to energy, ensuring energy stability, and the enhancement of energy utilization. | 3        | 3        |          |
| CO2       | Examine methods for conserving energy and technologies that promote efficiency in the creation of electrical and industrial machinery.                    | 3        | 3        | 1        |
| CO3       | Assess the pricing structure, conduct energy audits, manage energy consumption, and appraise the energy equilibrium within a company or entity.           | 3        | 3        | 1        |
| CO4       | Illustrate the energy landscape, energy approach, regulations pertaining to energy, ensuring energy stability, and the enhancement of energy utilization. | 3        | 3        |          |

# Subject/Code No: Electric Drives/6EE3-05 Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                                            | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Elaborate on the intricate principles behind DC and AC drives, delve into the nuances of scalar and vector control methods for alternating current motors, and explore the operation of drives across multiple quadrants | 3        | 3        |          |
| CO2       | Investigate the interconnection between power electronics and robust control systems knowledge, examining how these domains synergize to achieve meticulous speed regulation for both AC and DC motors.                  | 3        | 3        |          |
| CO3       | Formulate the closed-loop control architecture of DC drives and expound upon the design intricacies inherent in achieving vector control for AC drives.                                                                  | 3        | 3        | 1        |
| CO4       | Assess and scrutinize the array of application-oriented precision speed control techniques tailored for both AC and DC motor, considering their effectiveness and suitability in different scenarios.                    | 3        | 3        | 3        |

### Subject/Code No: Power System Planning. /6EE5-11 Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                               | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Brief about the basic structure of Indian power sector with organizing & monitoring bodies. | 3        | 3        |          |
| CO2       | Select the Reliability Planning Criteria for Generation, Transmission and Distribution.     | 3        | 3        |          |
| CO3       | Evaluate the factors affecting load dispatch and modeling of Generation Sources.            | 3        | 3        | 1        |
| CO4       | Estimate the Objectives of Transmission Planning with Network Reconfiguration.              | 3        | 3        |          |

### Subject/Code No: Electrical and Hybrid Vehicles. /6EE5-13 Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                               | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Illustrate diverse electric vehicle configurations and their constituent elements, outline hybrid vehicle setups, dimension components appropriately, and implement effective energy management strategies. | 3        | 3        | 1        |
| CO2       | Assess the operational characteristics of electric and hybrid electric vehicles.                                                                                                                            | 3        | 3        | 3        |
| CO3       | Devise hybrid vehicle and battery electric vehicle designs incorporating refined strategies for managing energy efficiently.                                                                                | 3        | 3        | 1        |
| CO4       | Assess the drive train configurations in both electric and hybrid electric vehicles.                                                                                                                        | 3        | 3        | 1        |
| CO5       | Illustrate diverse electric vehicle configurations and their constituent elements, outline hybrid vehicle setups, dimension components appropriately, and implement effective energy management strategies. |          |          |          |

### Subject/Code No: Power System - II Lab/6EE3-21 Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                              | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Evaluate the various parameters of a power system network (min 3 bus) using different load flow techniques.                                                | 3        | 3        | 1        |
| CO2       | Investigate the transient stability of power system network (min 3 buses).                                                                                 | 3        | 3        | 2        |
| CO3       | Find optimal power flow with the help of analytical and iterative methods.                                                                                 | 3        | 3        | 1        |
| CO4       | Design a power system network (min 3 bus) and analyze the severity of various types of fault.                                                              | 3        | 2        | 2        |
| CO5       | Comprehend the necessity of limits of voltage and overload in power system and perform the voltage and overload security analysis of power system network. | 3        | 2        | 1        |

### Subject/Code No: Electric Drives Lab/6EE3-22 Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                               | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Differentiate the testing of firing circuits in three phase-controlled bridge converters.                                   | 3        | 3        | 1        |
| CO2       | Examine the operation of three phase fully and half controlled converters for different types of loads experimentally.      | 3        | 3        | 1        |
| CO3       | Demonstrate the speed control methods of AC & DC motors                                                                     | 3        | 3        | 2        |
| CO4       | Illustrate operation and analysis of different converters with reference to control strategy.                               | 3        | 3        |          |
| CO5       | Analyze power quality aspects of three-phase controlled converters by calculating different parameters for different loads. | 3        | 3        |          |

#### Subject/Code No: Power System Protection Lab/6EE3-23 Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                    | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Determine fault type, fault impedance and fault location during single line to ground fault, line-to line fault and double line to ground fault. | 3        | 3        | 3        |
| CO2       | Explain the operation of micro-controller based over current relay in DMT type and IDMT type.                                                    | 3        | 3        |          |
| CO3       | Analyze and discuss the operation of micro-controller based under voltage relay, and micro-controller based over voltage relay.                  | 3        | 3        |          |

### Subject/Code No: Modeling and simulation lab/6EE3-24 Semester: 6th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                            | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Acquire proficiency in the software tools essential for the simulation of machinery and power systems. Apply this knowledge practically.                 | 3        | 3        | 1        |
| CO2       | Examine and contrast the operational effectiveness of electrical machinery when working alongside reactive power compensation equipment.                 | 3        | 2        | 3        |
| CO3       | Assess the functionality of Flexible AC Transmission System (FACTS) controllers based on their suitability for power system applications.                | 2        | 2        | 1        |
| CO4       | Devise a proficient Single Machine Infinite Bus (SMIB) model that incorporates a FACTS controller, employing MATLAB software as the platform for design. | 3        | 3        | 2        |
| CO5       | Devise a proficient Single Machine Infinite Bus (SMIB) model that incorporates a FACTS controller, employing MATLAB software as the platform for design. | 3        | 3        | 2        |

#### Subject/Code No: Power Quality and Facts/7EE5-12 LTP: 3+0+0 Semester: 7th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                   | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Use the concept of wind and solar pv energy generation in energy applications.                  | 3        | 3        |          |
| CO2       | Categorize the different topologies of wind and solar power generation                          | 3        | 3        |          |
| CO3       | Evaluate the hybrid and standalone solar and Wind energy systems.                               | 3        | 3        | 1        |
| CO4       | Investigate the different issues in integration of wind and solar energy systems into the grid. |          |          |          |

#### Subject/Code No: Wind and LTP: 3+0+0 Semester: 7th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                   | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Use the concept of wind and solar pv energy generation in energy applications.                  | 3        | 3        |          |
| CO2       | Categorize the different topologies of wind and solar power generation.                         | 3        | 3        | 1        |
| CO3       | Evaluate the hybrid and standalone solar and Wind energy systems.                               | 3        | 3        | 2        |
| CO4       | Investigate the different issues in integration of wind and solar energy systems into the grid. | 3        | 3        | 2        |

#### Subject/Code No: Embedded Systems Lab/7EE3-21 LTP: 0+0+3 Semester: 7th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                              | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Elaborate the fundamentals of embedded system and sensor integration.                                      | 3        | 3        |          |
| CO2       | Simulate the programming knowledge for controlling a real time process using hardware in loop system.      | 3        | 3        | 2        |
| CO3       | Explore the specific sensor needs within a given control process.                                          | 3        | 3        |          |
| CO4       | Critique the time needed for processing real-time data into the digital domain and the reverse conversion. | 3        | 3        |          |

#### Subject/Code No: Advance control system lab/7EE3-22 LTP: 0+0+3 Semester: 7th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                             | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Utilize MATLAB to showcase the temporal behavior of both rotary and linear servo systems.                                 | 3        | 3        | 1        |
| CO2       | Investigate the operational principles of speed and positioning control transfer functions for DC and AC servo motors.    | 3        | 2        | 1        |
| CO3       | Utilize MATLAB to conduct a frequency response analysis on a linearized model of an industrial robot for minor movements. | 3        | 2        |          |
| CO4       | Evaluate the effectiveness of P, PI, and PID controllers across diverse control system scenarios using MATLAB.            | 3        | 2        |          |
| CO5       | Devise Arduino-based control setups for real-world implementations involving pendulum and inverted pendulum systems.      | 3        | 2        |          |

#### Subject/Code No: Industrial Training/7EE7-30 LTP: 0+0+3 Semester: 7th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                  | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Demonstrate competency in the field of electrical engineering through problem identification, formulation and solution.                        | 3        | 2        |          |
| CO2       | Develop the ability to work as an individual and in group with the capacity to be a leader or manager as well as an effective team member.     | 3        | 2        | 1        |
| CO3       | Implement skills effectively in oral and written communication, including report writing and power point presentations using multimedia tools. | 3        | 2        |          |
| CO4       | Analyze industrial problems as a part of industrial training curriculum.                                                                       | 3        | 3        |          |
| CO5       | Acquire practical understanding of theoretical aspects by participating in industrial projects.                                                | 3        | 3        |          |

#### Subject/Code No: Seminar/7EE7-40 LTP: 0+0+3 Semester: 7th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                           | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Identify important practical concepts from the industry exposure and grasp the depth knowledge of the topic.                            | 3        | 3        |          |
| CO2       | Understand organizational issues including teams, attitudes and define work-life balance and its impact on organizations and employees. | 3        | 1        | 1        |
| CO3       | Get in touch with recent technologies.                                                                                                  | 3        | 3        |          |
| CO4       | Solve industrial problems as a part of industrial training curriculum.                                                                  | 3        | 3        | 1        |

#### Subject/Code No: Power Generation Sources/7EE6-60.2 LTP: 0+0+3 Semester: 7th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                           | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Describe the various renewable energy sources.                                          | 3        | 3        | 1        |
| CO2       | Inspect possible renewable energy sources.                                              | 3        | 2        | 1        |
| CO3       | Illustrate the renewable energy sources.                                                | 3        | 2        |          |
| CO4       | Identify the energy sources & propose renewable energy sources as societal application. | 3        | 2        |          |

#### Subject/Code No: Electrical Machine and Drives/7EE6.601 LTP: 0+0+3 Semester: 7th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                       | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-----------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Use the concepts of constructional details and principle of rotating machines in electrical drives. | 3        | 3        | 2        |
| CO2       | Identify motor rating and specification for efficient conversion.                                   | 3        | 3        | 1        |
| CO3       | Investigate the various control techniques for speed control on various electric drives.            | 3        | 3        | 1        |
| CO4       | Justify the design knowledge for various closed loop control of electric drives.                    | 3        | 3        | 1        |

#### Subject/Code No: Advanced Electric Drives/8EE3-13 LTP: 3+0+0 Semester: 8th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                       | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Organize the advanced controls of AC drives including digital signal processing-based motion control.                               | 3        | 3        |          |
| CO2       | Differentiate transformations and reference frame theories on AC motors for implementing the vector control scheme.                 | 3        | 3        |          |
| СОЗ       | Argue the need for field flux control and DSP based control in real world application of AC motor drives.                           | 3        | 3        | 1        |
| CO4       | Investigate the vector or field-oriented control of ac drives to accommodate parameters variations for uncompromised speed control. | 3        | 2        |          |

#### Subject/Code No: HVDC Transmission System/8EE3-11 LTP: 3+0+0 Semester: 8th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                              | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|----------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Demonstrate DC transmission topology along with components of HVDC system. | 3        | 3        | 2        |
| CO2       | Compare VSCs for control of HVDC systems.                                  | 3        | 3        | 1        |
| CO3       | Check stability issues in HVDC link.                                       | 3        | 3        | 1        |
| CO4       | Recommend proper MTDC link.                                                | 3        | 3        | 1        |

#### Subject/Code No: Energy Audit and Demand side Management/8EE6-60.1 LTP: 3+0+0 Semester: 8th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                                                                                                 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Show the energy scenario, energy strategy, energy laws, energy security and energy conservation in India.                                                                                                                                                                     | 3        | 3        |          |
| CO2       | Organize the Energy forecasting, Energy economics, Energy pricing and incentives, energy and its management, energy planning, and energy economics. Energy auditing of motors, lighting system and building, by appropriate analysis methods through survey instrumentations. | 3        | 3        | 2        |
| CO3       | Examine the Electrical-Load Management and Demand side Management in transport, agriculture, household and commercial sectors.                                                                                                                                                | 3        | 3        |          |
| CO4       | Investigate the pre or detail energy audit in lighting system, household and commercial buildings, agriculture, and electric machinery of an industry or organization.                                                                                                        | 3        | 3        | -        |

#### Subject/Code No: Soft Computing/ 8EE6-60.2 LTP: 3+0+0 Semester: 8th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                     | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Implement the various soft computing approaches for finding the optimal solutions.                | 3        | 3        |          |
| CO2       | Compare the feasibility of applying a soft computing methodology for a particular problem.        | 3        | 3        |          |
| CO3       | Justify soft computing technologies such as FL, NN, GA to optimize the design of complex systems. | 3        | 3        | 1        |

#### Subject/Code No: Energy Systems Lab/8EE3-21 LTP: 0+0+3 Semester: 8th

#### **Course Outcome Mapping with Program Specific outcome**

| CO Number | CO Definition                                                                                                                                                                                   | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Categorize Performance of Solar Flat Plate Thermal Collector Operation with Variation in Mass Flow Rate and Level of Radiation.                                                                 | 3        | 3        | 1        |
| CO2       | Compare wind turbine generators with DC generators, DFIG, PMSG etc.                                                                                                                             | 3        | 3        | 1        |
| CO3       | Write different components of Micro Grid, micro-hydel pumped storage system and Fuel Cell and its operation.                                                                                    | 3        | 2        | 2        |
| CO4       | Design and simulate hybrid wind-solar power generation along with Performance Assessment of Hybrid Power System by using Intelligent Controllers for on-grid and off-grid Hybrid Power Systems. | 3        | 2        | 2        |

#### Subject/Code No: Project/8EE7-50 LTP: 0+0+3 Semester: 8th Course Outcome Mapping with Program Specific outcome

| CO Number | CO Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| CO1       | Demonstrate literature survey and technical pre-requisites of the selected project topic. Select the category of project (1.Design & implementation 2.Analysis 3.Up gradation of old project)Work on the allocated project under the supervision of the assigned guide Survey the available literature (select base paper) on the allocated project topic (from various resources-books, research papers, dissertation reports)Gain expertise over the technical and non-technical aspects of the finalized project | 3        | 3        | 1        |
| CO2       | Predict the challenges in practical implementation of the project hardware/software and draft their possible alternate solutions. Identify and summarize the challenges in practical implementation of the project Make a rough draft of the possible alternate solutions, for the recognized challenges Choose the feasible, practically realizable and economically viable options Finalize at least one option (from the chosen) and proceed further as per the guidelines.                                      | 3        | 2        | 1        |
| CO3       | Evaluate the contemporary tools suitable for measuring and utilizing databases to address the identified issue(s).                                                                                                                                                                                                                                                                                                                                                                                                  | 3        | 2        |          |
| CO4       | Infer the result findings, compare with the benchmark models and justify the concluding remarks along with the future scope.                                                                                                                                                                                                                                                                                                                                                                                        | 3        | 2        |          |
| CO5       | Communicate knowledge and findings for lifelong learning.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3        | 2        |          |
| CO6       | Prepare technical report with ethical practices and communicate his/her findings in a project with presentation skills and confidence level.                                                                                                                                                                                                                                                                                                                                                                        | -        | -        | -        |
| CO7       | Demonstrate knowledge and understanding of the Identified problem along with team to financially manage projects and in multidisciplinary environments.                                                                                                                                                                                                                                                                                                                                                             | -        | -        | -        |